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Abstract

Cost estimation is an integral part of the procurement process of major weapon
systems. Despite this essential role, the cost estimation process is only able to provide
the decision makers and analysts with limited insight. This is due to the complex nature
of the cost models which typically contain 20-30 cost estimating relationships (CERs)
and 50-100 variables.

In an effort to provide the decision makers and analysts with additional insight to
the cost estimate, this research demonstrates a methodology that will 1) identify the
critical cost drivers of the cost model, 2) estimate the effects of these cost drivers, and 3)
approximate the variance of the cost model to support confidence interval estimation.

Using a cost model for the Navy's Tomahawk Baseline Improvement Program, a
series of designed experiments in conjunction with regression analysis was employed to
develop a model of the critical cost drivers--a metamodel. This metamodel captures the
essence of the original cost model, but is in a more comprehensive form. The estimation
of the variance contained in the original cost model allowed the construction of
confidence intervals using the metamodel. A comparison of the intervals constructed
using the metamodel with those generated by the original model verified the metamodel

can be used as an approximation of the original model to facilitate "what-if" analysis.




THE DEVELOPMENT OF A METAMODEL FOR A MAJOR WEAPON
SYSTEM COST MODEL

I. Introduction

A primary responsibility of all decision makers is to maximize the utility of the resources
available to their organizations. This is especially true in the Department of Defense
where senior management is responsible for selecting the weapon systems that will
maximize the military's war fighting ability within a limited budget. In order to properly
identify the weapon systems, the decision makers must have two vital pieces of
information associated with each competing system: 1) estimates of the total cost of the
system, and 2) estimates as to the level of effectiveness imparted by the availability of the
system. Without either piece of information, the decision makers can not intelligently
determine which alternative will provide the maximum utility to the military. While two
pieces of information are required, this research will be limited to obtaining accurate cost
estimates.

Poor cost estimates can have many consequences of varying severity. In terms of
the public's confidence, inaccurate cost estimates contribute to cost overruns that the
public views as a squandering of tax-payer money which ultimately erodes the public's
trust and confidence in the military's policy making ability. In terms of resource
allocation, the cost overruns that result from inaccurate cost estimates serve to decrease
the resources available for future systems. The most dangerous consequence however,
results from the fact that the decision makers have used inaccurate information. This

translates into the selection of a system that may not maximize the force's war fighting




ability. Clearly there is considerable weight placed on the cost estimates of major
weapon systems in terms of both national resources and possibly lives, so there exists a
great incentive to ensure that reliable estimates are available to the DoD's decision
makers.

In an effort to ensure reliable cost estimates are available to decision makers,
Congress has mandated the performance of Independent Cost Estimates for major
weapon systems under the DoD Authorization Act of 1984 Section 1203, Chapter 4 of

Title 10. The issuance states,

"The Secretary of Defense may not approve the full scale engineering
development or the production and deployment of a major defense
acquisition program unless an independent estimate of the cost of the
program first has been submitted to (and considered by) the Secretary of
Defense (AFLC Handbook, 1989: 14-62)."

The performance of independent cost estimates is overseen by the Office of the Secretary
of Defense (OSD) Cost Analysis Improvement Group (CAIG). The OSD CAIG prepares
a cost estimate for the specific program. The cost estimate prepared by OSD CAIG is
used in a review process where discrepancies among the independent cost estimate and
the component cost (e.g., a program office or other designated implementing
organization) estimates may be identified and rectified (AFLC Handbook, 1989: 14-62)."
Ideally, the Independent Cost Estimate serves to reduce doubt as to the reliability
of the cost estimate by providing an impartial estimate to the Secretary of Defense and
other decision makers when deciding which alternative to select. However, given the
level of resources involved in such decisions, and the fact that cost estimates are just that-
-estimates, it is not surprising that a considerable amount of debate and contention

usually surround the review process.




Research Objective

The sponsor of this research is Program Analysis and Evaluation (PA&E) of the Office of
the Secretary of Defense. The PA&E Deputy Director for Resource Analysis in the role
as the OSD CAIG makes independent cost estimates of major defense acquisition
programs. Related to this research, the CAIG prepared a cost model for the Navy's
Tomahawk Baseline Improvement Program (TBIP). OSD PA&E is interested in
determining if design of experiments and regression analysis techniques may be
employed to 1) identify the cost drivers of the TBIP cost model, 2) estimate the effects of
the cost drivers, and 3) approximate the variance of the TBIP cost model to support
confidence interval estimation. If this methodology is successfully applied to the TBIP
model, the result will be a metamodel that will provide the cost analysts and program
management with additional insight to the underlying relationship of the cost drivers.

Cost analysts will benefit from this approach primarily from knowing which
variables drive the cost of the system. Identification of the cost drivers will simplify the
cost risk analysis since the cost drivers reflect the largest portion of the total cost and
therefore will also contain the most significant potential for uncertainty. Identification of
the cost drivers will also benefit the analysts in their future analysis since similar systems
may have nearly the same cost drivers. Finally, this approach will provide additional
insight relative to the cost estimates which may prove helpful during the process of
rectifying the discrepancies present among the independent cost estimates and component
cost estimates.

This approach also holds the potential for significant benefit by providing
additional insight to the program's management. The resultant metamodel may serve as
the heart of an interactive model the program management may use for "what-if"
analysis. This interactive model will be much simpler and quicker to use than the

original model. Secondly, by having an estimate as to the effect of each cost driver, the




program management will have much more insight as to the variables that drive the cost

of the program and can more closely guard against cost overruns.

Scope and Limitations

1. This research used a parametric cost model developed by OSD PA&E for the
Navy's Tomahawk Baseline Improvement Program to demonstrate how design of
experiments and regression analysis techniques may be employed to develop a
metamode] for a major DoD weapon system cost model. It was assumed that the
supplied cost model was reliable, and the only modifications to the model were in

terms of its execution to facilitate data collection.
2. It was assumed that three-way and higher interactions of the factors are negligible.
3.  The validation of the methodology developed in this research will be accomplished
by comparing the confidence intervals developed using the metamodel relative to

those developed by the OSD PA&E cost model.

4. The resultant metamodel is valid only over the design region from which it was

derived.

1-4




II. Background

This chapter reviews the parametric approach to deriving cost estimates, and discusses
the iterative process used in the development of a metamodel for the TBIP cost model.
The parametric approach to estimation uses a series of equations to derive the cost of an
item from a given set of parameters describing that item. The discussion of the derivation
of cost estimates relates specifically to the approach used by OSD PA&E in the TBIP
cost model. Despite this, the parametric approach is widely used in the DoD and civilian
sectors, so the methodology demonstrated in this thesis is applicable to organizations
beyond OSD PA&E. The methodology used to develop the metamodel involves the

techniques of experimental design and regression analysis.

The OSD PA&E Cost Model

The OSD PA&E cost model for the Navy's TBIP is a spreadsheet-based model that is
used to estimate both the production Cost and the engineering, manufacturing and
development (EMD) Cost of the program. The OSD PA&E analysts developed the
model using a parametric approach based on cost estimating relationships (CERs). The
CERs are statistically derived equations relating the dependent variable (cost) to the
independent variables (parameters describing the weapon system), and are derived using
historical data from similar systems (Womer and Marcotte, 1986: 39). An example of a
CER used to estimate the cost of the Rocket Booster Motor (RBM) for the Navy's TBIP
is given below (CAIG Staff Report, 1994:82):

-0.059
RBM Cost = 0.00155 +(Wt) 387 (1 - MF) 0171 asp)t 328 « 604 1)

where Wt = Rocket motor weight (Ibs)




MF = Motor mass fraction
ISP = Propellant specific impulse (in-lbs/sec)

Rate = Average production rate per month

For a large and complex system such as a missile, many CERs, each representing
the cost of a subsystem, are required to develop an accurate cost estimate of the complete
system. A total of 29 CERs are required to estimate the production cost of the TBIP.

A convenient and commonly used method of partitioning the system is to follow a
work breakdown structure (WBS). For DoD systems, Military Standard 881A provides
detailed WBS descriptions for 7 major defense items. For a missile system WBS, there
are six Level I elements:

1) Air Vehicle

2) Command and Launch Equipment
3) Training

4) Peculiar Support Equipment

5) System Test and Evaluation, and

6) System/Project Management.

Each Level I element may contain several Level II elements which, in turn, contain
several Level III elements, and so on. The analyst must determine the levels necessary to
accurately model the system. The OSD PA&E TBIP model's 29 CERs correspond to
Levels II, I, IV and V WBS elements. A complete list of elements used in estimating

the production cost is shown in Table 2-1.




Level 1 Level It Level 111 Level IV Level V

Tomahawk
Missile
Air Vehicle Propulsion Turbofan Engine MK-402
Upgrade Kit
Solid Rocket Booster MK-111
Payload Hard Target Penetrating Warhead
IW/ER Warhead

Airframe & HTPW Section

Control
IW/ER Section
Guidance Forward Looking IR Seeker
Radar Altimeter Antenna
A-J GPS/IMU Computer & A-J GPS/IMU Computer
Antenna

GPS Antenna

Data Links & Antenna Video Data Link
Video Link Antenna
UHF Data Link
UHF Antenna

Integration & || Block II Dis-assembly & Prep

Assembly
Propulsion Integration & Test
Payload Integration & Test
Guidance Integration & Test
All Up Round Integration & Test
Command & Data
Launch
Training

Peculiar Support
Equip

Systems Test & | Government
Evaluation

Contractor

Tooling & Test | Government

Equipment

Contractor
Systems Eng/ Government
Program Man

Contractor

Initial Spares

Table 2-1. Work Breakdown Structure Elements




Once the subsystem cost estimates have been obtained from the CERs, the
estimates must undergo several manipulations prior to calculating the final Production
Cost estimate. The first manipulation is to convert the CER estimates to same year
dollars. This is necessary since the CERs were derived in various years, and a FY84
dollar is not equivalent to a FY93 dollar.

The second manipulation is somewhat more complicated, and involves converting
the cumulative average cost of the 1000t unit (CAC 1000) to the theoretical cost of the
first production unit (T1). This conversion is accomplished using learning curve theory,
and requires an estimate of each subsystem's learning curve slope. I will not provide
additional detail on learning curve theory; however, an insightful reference is the RAND
Corp. report by Harold Asher (1956).

The final step in the calculation of the Production Cost estimate is to determine
the number of subsystems produced each year of the program. This annual production
rate is used to discount the T1 costs of the subsystems on an annual basis. This
discounting of the T1 costs is calculated using learning curve theory equations, and
involves the reduction in per unit cost due to 1) increased efficiency in the manufacturing
process, and 2) economies of scale. The Production Cost estimate is finally obtained by
summing all the subsystem costs over the entire production run.

The cost estimate obtained from this approach provides a very limited amount of
information. The value is a point estimate and has zero probability of occurring. In order
to provide more useful information, OSD PA&E calculates a confidence interval to
capture the uncertainty associated with the cost estimate. The confidence intervals relate
the uncertainty associated with the cost estimate through the width of the interval--the

wider the interval, the more uncertainty present.




Risk Analysis of Cost Estimates

In order to capture the uncertainty present in the estimate, OSD PA&E includes an error
term in all the CERs. For the RBM example, the CER becomes,

eITor

)—0 059 ¥ exp

RBM Cost = 0.00155 «(Wt) 387 x(1 - ME) =017 SR 328 (0 1

where Error = (Normal RV) * (Adjusted SEE)

Normal RV = N(0,1) random variable

0.5
Adjusted SEE = ((SEEz) *(1+ i))
N

SEE = Standard Estimate of Error from of the CER, and

N = Number of observations in the derivation of the CER.
Monte Carlo simulation is used to generate typically 1,000 cost estimates of the complete
system. An independent random variable (Normal RV in the RBM CER) is generated for
each CER used to calculated each of the 1000 cost estimates of the complete system.
This Monte Carlo simulation produces a distribution of cost estimates for the complete

system as shown in Figure 2-1.

100%
90% +
80% +
70% +
60% +
50% +
40% +
30% +
20% +
10% +

Percentile

0% ! t } } t t t i }
1000 1200 1400 1600 1800 2000 2200 2400 2600 2800
FY93 § in Millions

Figure 2-1. Distribution of TBIP Production Cost Estimates




From this distribution of the estimated cost for the system, confidence intervals can be
constructed about a desired percentile. For example, the decision maker may ask for a cost
estimate in which 50% of the time the actual cost will be higher than this estimate and the
remaining 50% of the time the actual cost will be lower than this estimate. The analyst will
then construct a confidence interval about the 50" percentile or median. This is illustrate in

Figure 2-2.

100%
90% -
80% =+
70% -+
60%
50%
40%
30%
20%
10%

0%

Upper Bound

/ Lower Bound

1200 1400 1600 1800 2000 2200 2400 2600 2800
FY93 $ in Millions

95% Confidence Interval about the 50" Percentile

Percentile

1000

Figure 2-2.

The lower and upper bounds of the confidence interval correspond to percentiles that are

calculated by,

1
p*(1-p)

p

t

|

n

f

where

P

is the desired percentile, for example if the median
total cost is desired let p = 0.50,

is the number cost estimates generated, and

is the value from the normal distribution tables
corresponding to a given significance level--o/2.




For the example of a 95% confidence interval about the 50" percentile,

Let p = 0.50,
n = 1000, and
z = 1.96 (0=0.05)

Given this information, we can now calculate the bound percentiles,

1
Bound Percentiles =0.50 £1.96 *I—O'SO *(1=50 )'[2
L 1000

=0.50 £0.031
=(0.469, 0.531)

So the bounds for a 95% confidence interval about the 50th percentile correspond to the
46.9 percentile and the 53.1 percentile. The percentiles obtained from this equation can be
converted to an actual observation value by multiplying the percentile associated with the
bound by n, the number of cost estimates generated. As n=1000, the 469th and 531st
observations are the rankings of the lower and upper bounds of the confidence interval
when the observations are ranked in ascending order. The bounds about several

percentiles are presented in Table 2-2.

Percentile Lower Bound Upper Bound
50th 0.469 0.531
60th 0.569 0.631
70th 0.671 0.729
g0th 0.775 0.825
90th 0.881 0.919

Table 2-2. Percentiles For 95% Confidence Interval Bounds (Anderberg, 1993:10)




Development of the Metamodel

The development of the metamodel may be viewed as an iterative investigation
formalized as the sequence:
CONIJECTURE, DESIGN, EXPERIMENT, and ANALYZE

In the CONJECTURE phase, the analyst forms a hypothesis. In the DESIGN phase, a
suitable experiment is devised that will allow the testing, estimation and development of
the conjectured model, and the EXPERIMENT phase is simply the performance of this
designed experiment. The next phase of the iteration is to ANALYZE the data at hand to
either verify the conjectured hypothesis, or the refinement of the hypothesis which will
require further DESIGN, EXPERIMENT, and ANALYSIS ( Box and Draper, 1987:7-8).
While I will discuss the specific steps of the iterations involved in the development of the
metamodel in Chapter IIL, it is necessary to provide background material and references
for further study for the techniques employed--experimental design and regression

analysis.

Experimental Design.

Experimental design is a technique that allows a researcher to systematically vary
the inputs or independent variables of an experiment in such a manner that the affects of
the individual inputs may be estimated to the desired resolution (Montgomery, 1991:1).
While the estimation of the affects is the primary objective, experiments require both time
and resources, so minimizing the number of experiments required is also an objective.

An example will be used to illustrate the pertinent concepts of 2k factorial designs.
Suppose a process consists of k=3 independent variables and also suppose that each

variable has a high- and a low-level as shown in Table 2-2.




Variable

High-Level Value

Low-Level Value

A
B
C

10
9
3

4
5
1

Coding of Variables

Table 2-3. Example Data

Rather than working with the actual numeric values, it is convenient and

convention to work with coded variables, xj (Box and Draper, 1987:20). The coded

variables are obtained by using the formula,

where

is the actual numerical value

&i o is the center of the region, and

S

i is the distance from the center to the actual value.

For the example, the values of the coded variables become simply positive and negative

ones as indicated in Table 2-3.

Coded Variable High-Level Low-Level
XA +1 -1
Xp +1 -1
Xe +1 -1

Table 2-4. Coded Variables

"o,

It is also common to imply the value of "1", and just denote the value with a "+" or "-";

this is called the "geometric notation” (Montgomery, 1991:279).




2K Factorial Designs

It is important to realize that even with just k=3 factors, there are 7 effects that

may be estimated due to the interactions present. These 7 effects are listed in Table 2-4.

Main Effects:
A
B
C
Two-Way Interactions:
A*B
A*C
B*C
Three-Way Interactions:
A*¥B*C

Table 2-5. List of Effects Present for k=3 Problem

A factorial design is a convenient means of obtaining estimates of all (2k -1) factors. In
order to estimate each of the 3 main effects and 4 interactions in the example, the 23

factorial design shown in Table 2-5 may be used (Montgomery, 1991:279).

Run A B C
1 - - -
2 + - -
3 - + -
4 + + -
5 - - +
6 + - +
7 - + +
8 + +

Table 2-6. 23 Factorial Design

The 23 factorial design requires 8 runs. All factorial designs require 2k runs, so when k is
large, it may be infeasible to use a factorial design. For example if k=10, a factorial
design would require 1,024 experiments to estimate all 1,023 main effects and

interactions.
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2k-D Fractional Factorial Designs

The researcher may decide that some of the higher order interactions are
negligible and thus may be assumed to equal zero. For instance, in the example, the
researcher may assume the two-way interactions and higher are equal to zero. This
assumption can greatly reduce the number of experiments required, as a 23-1 fractional
factorial design may be used which requires only 4 runs rather than 8. A more dramatic
example is an experiment consisting of k=10 factors. The assumption of all two-way
interactions being negligible would reduce the number of experiments required from
1024 to 16. However, the compromise of performing fewer runs is an aliasing of the
main affects with the two-way interactions. This means that the analyst can not
independently estimate both the main affects or the two-way interactions. If the two-way
interactions are truly equal to zero, then this is an acceptable practice; however, if the
two-way interactions are not equal to zero, the analyst can not obtain a clear estimate of
the main affects. The level of the aliasing is described by the resolution of the design. In
general terms, if a design is Resolution , then all nth order terms will not be aliased with
any terms lower than order (k-n). For the example, the 23-! fractional factorial design is
Resolution ITI, so the main affects are not aliased with any terms lower than two-way
interactions. In the DESIGN phase, the analyst must take into consideration the
Resolution required to properly ANALYZE the conjectured hypothesis. There are
several sources that provide designs for 2k fractional factorial designs(Montogemery,

1991:626-644; Cochran and Cox, 1957:261).

Screening Designs

Experiments performed using computer simulations typically contain a large
number of variables, some of which may not have a significant effect on the dependent
variable. In order to identify the significant variables and eliminate the insignificant

variables, a screening design is commonly used (Kleijnen, 1975:372). A screening




design can greatly reduce the number of experiments performed since it is not necessary
to include the insignificant variables in the model building phase of the analysis--a phase
that may eventually require Resolution V designs which are extremely expensive in terms
of the number of experiments required.

There are several approaches to performing a screening design; Kleijnen provides
useful descriptions and a discussion of the issues involved for 1) fractional factorial, 2)

random, 3) supersaturated, and 4) group-screening designs in his text (1975:372- 407).
Model Building Designs

The design used in developing a first-order model must have at least Resolution
[T or higher; in fact a screening design may serve as a first-order model design. If the
analysis proves the addition of higher-order terms will significantly add to the
explanatory power of the model, a new class of designs must be used. The most common
second-order model designs are Central Composite Designs (CCD). The CCD is formed
by supplementing a 2kP fractional factorial design with "star" points and center point
replications. A concise discussion and example of how to generate a CCD is provided in
the Cornell text (1990:52-58). The "star” points are sometimes prohibitively expensive,
or may not be feasible; in these cases, a design requiring only three settings may be more
applicable. Box-Behnken designs are a type of design requiring only three settings (Box
and Behnken, 1960:455).

Box-Behnken designs provide designs for second-order models by combining
two-level factorial arrangements with incomplete block designs. As an example of how a
Box-Behnken design is constructed, suppose the balanced incomplete block design

shown in Table 2-7 is used.




Block Variables

1 X, X,
2 X, X,
3 X, X,
4 X, X,
5 X, X,
6 X, X,

Table 2-7. Example Balance Incor;lplete Block Désign
This balanced incomplete block design is for 4 treatments (factors) has six blocks, a block
size of 2, and 3 replicates of each treatment. To convert this balanced incomplete block
design into a Box-Behnken design, each block is expanded by replacing it with factorial

design for the factors contained in the block. For instance, block 1 becomes,

X1 X2 X3 X4
-1 -1 0 0
+1 -1 0 0
-1 +1 0 0
+1 +1 0 0

Table 2-8. Factorial Design For Block 1 of Box-Behnken Design

This expansion is performed for each of the six blocks resulting in a design with a total of
24 runs ( Box and Behnken, 1960:460).

The original paper addresses designs for up to 17 factors; however, designs for
larger experiments can be generated by the analyst using the approach previously
described. An extensive listing of incomplete block designs for up to 91 factors is given
in the Cochran and Cox text (1957:469-470). This is an especially useful design due to
its ease of construction, and ability to generate data for a second-order model with only

three levels--"high," "low," and "center."




Regression Analysis
Clearly regression analysis belongs to the ANALYZE phase of the CONJECTURE,
DESIGN, EXPERIMENT, and ANALYZE sequence. In regression analysis, the data
obtained from designed experiments are used to empirically relate the independent
variables to the dependent variable through a mathematical model. The resultant model is
an approximation of the true relationship between these variables. This approximation of
the model is then used to test the hypothesis formed in the CONJECTURE phase.
Regression analysis relies on ordinary least squares analysis to provide estimates
for the coefficients of the hypothesized model that minimize the sum of the squared
differences between the observed values of the dependent variables and those predicted

by the model. In the CONJECTURE phase, the analyst hypothesizes the "true" model as,

Y, =0, +BX +¢;
where Y, is the [n x 1] vector of responses
B, is the "true" intercept value
B, is the [(p-1) x 1] vector of "true" parameter values
X, is the [n x (p- 1)] matrix of independent variable values, and
g is the [n x 1] vector of ~ N(0,6) random errors.

The approximation of this model is,

Yi=b o +th, X
where Y. is the [n x 1] vector of estimates
b, is the estimated intercept value
b, is the [(p -Dx 1] vector of estimated parameter values, and
X, is the [n x (p - 1)] matrix of independent variable values.
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The value, Y, - Y: = e, is called the residual. Ordinary least squares

analysis estimates the parameters so that the sum of the squared residuals, Sum of
Squares Error, is minimized (Neter and others, 1990:225-240). The Neter, Wasserman
and Kutner text provides an in-depth, yet straightforward discussion of the topic of

regression analysis.

Related Research

Given the specific nature of this research, there has not been any previous work to report;
however, there has been a considerable amount of research in the development of
metamodels related to other areas. The purposes for developing the metamodels and the
fields performing the research are quite varied, but the basic methodologies are quite
similar. For example, Adams (1994) creates a metamodel of a ground water flow model
in an attempt to calibrate the parameters of the model. Currently, the parameters are
calibrated by graphically matching the observed water-levels to the models predicted
levels. Forysthe (1994) uses a metamodel of TAC THUNDER, the Air Force's premier
campaign level model, in an attempt to determine the apportionment of aircraft that
maximizes the effectiveness of various aircraft scenarios. The results obtained from the
optimization of the metamodel address the concern that US military commanders fully
exploit current weapon systems before acquiring replacement systems.

A researcher attempting to develop a metamodel of a computer simulation will
quickly learn that there are unique issues involved in the design of the experiments; the
main issue being the lack of designs for larger problems. Donohue (1994) provides an
overview of research related to the design issues that are unique to the use of simulation
models. The Donohue, Houck, and Myers article (1992: 539-547) is extremely useful for
a researcher attempting to develop a metamodel. The articles provide a sequential design

procedure for the construction of first- and second-order simulation metamodels.
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III. Methodology

This chapter covers the methods used to develop a metamodel for the OSD PA&E cost
model. The methodology consists of five iterations of a CONJECTURE, DESIGN,
EXPERIMENT, and ANALYZE sequence,

Phase 1: Screening Design,

Phase 2: First-Order Model,

Phase 3: Second-Order Model,
Phase 4: Estimation of Variance, and

Phase 5: Calculation of Confidence Intervals.

I will present each iteration in terms of the sequential experimentation framework.

Screening Design

In developing a metamodel of the OSD PA&E model, I intend to develop a model that
captures the essence of the OSD PA&E model, yet contains as few variables as possible.
Given the large number of variables present, k = 47, it would require a considerable
number of runs to develop a second-order model containing all 47 variables. In an effort
to reduce the dimensionality of the problem and decrease the number of runs required in

developing the model, I will test each variable for significance.

Conjecture

Although the OSD PA&E cost model contains k=47 variables, only some k' < 47 are

significant.




Design

The purpose of this design is to allow the analyst to identify the significant factors
present in the model. Experimental designs meeting this objective are called screening
designs and are typically Resolution III or IV. For this investigation, a Plackett-Burman
design was selected; this was due to the fact that Plackett-Burman designs exist for k =
N-1 factors where N is a multiple of 4 (N is the number of runs in the design). A
fractional factorial may have also been used, but would have resulted in unnecessary runs
as these designs only exist for k = N-1 factors where N is a power of 2. The Plackett-
Burman designs provide Resolution III, and are published for N < 100 (Plackett and
Burman, 1946:323-324).

A Resolution III design will provide an estimate of the main effects; however, this
estimate is aliased with two-way interactions. This is not an issue if the two-way
interactions are assumed to be negligible; however, the nonlinear form of the CERs leads
me to believe this assumption may not be appropriate. This required the use of a
Resolution IV design. A Resolution IV design can be obtained from the Resolution III
Plackett-Burman design by employing the "fold-over" technique. The "fold-over"
technique is merely the augmentation of the original design with an identical design but
with reserved signs (Box and Draper, 1987:158-159).

While the design specifies whether a factor is set to a high- or low-level at each
design point, it does not specify the actual values of the high- and low-levels. Deciding
the range of the design space is left to the analyst, but must include the region of interest
as the resulting metamodel is only valid over the range from which it was derived. In this
research, it was decided that the high- or low-levels would correspond to 120% and 80%

of the center-point values provided by OSD PA&E. As an example, for the factor, ISP,

Value at high - level, 101,940
ISP =< Value at center - point, 84,950
Value at low - level, 67,960




It was necessary to modify this approach for several of the factors as they required integer
values. To accommodate this requirement, upper level values were rounded up and lower
level values were rounded down. The range of all factors is presented in Appendix B.

To summarize, I selected a Plackett-Burman design for k=47 factors, and N=48
runs; however the "fold-over" technique doubled the number of runs required to 96. This
design is Resolution IV and will allow the estimation of all main effects clear of any two-

way interactions.

Experiment

The OSD PA&E cost model was modified to simplify the process of obtaining a
large number of observations. An illustration of the overall is shown in Figure 3-1. The
automation was accomplished by linking the cost model to a spreadsheet containing the
appropriate orthogonal design. This design spreadsheet contains +1's that represent the
high and low settings of the factors. To begin a run, the spreadsheet containing the factor
values determines the level of each factor from the design spreadsheet, and sets the factor
to its appropriate level. The cost model then reads in the factor values and calculates the
cost at this design point. The cost is then passed to a fourth spreadsheet that maintains
the cost estimate for each run of the model. This entire process is controlled using macro

commands, so once the design is prepared, the researcher is free to perform other tasks.

Factor A =
H High Level
I aAor— ———p» CERs |—® Costs
1 1 Factor B =
1 1 Low Level
Design Factor Level Cost Model Spreadsheet
Spreadsheet Spreadsheet Spreadsheet Maintaining

Costs
Figure 3-1. Hlustration of the Cost Model Automation
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The experimentation consisted of obtaining the cost estimates corresponding to

the Plackett-Burman design previously described.

Analysis
The Partial F Test is used to identify the significant factors. The hypotheses for
this test are,
Ho: Bi=0, and
Hy: Bi#0 for i=1,..., 47

where B is the coefficient of the ith factor.

The test statistic is,

_ SSRXN X, Xy Xy X

F’ .
MSE

The decision rule associated with the Partial F Test is,

If F* < F(1 - o; 1, n-p); fail to reject Ho,

If F* > F(1 - a; 1, n-p); reject Ho = The ith factor is significant

where n = the number of runs in the experiment, and
p = the number of parameters (including the intercept).

The Partial F Test will be performed for each of the 47 factors to determine if its
inclusion in the model adds to the explanatory power of the model at the o significance
level.

The sequence laid out above will identify the significant factors if any exist.
However, when this approach was employed on the OSD PA&E cost model, no factors
were consistently identified as being significant. In other words, the factors determined

to be significant using one set of observations were not necessarily significant when a
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second or third set of observations were used in the analysis. This inconsistency in the
identification of significant variable also occurred when data sets containing multiple
replications of each design point were used. This inconsistency in the results was due to
the extreme variability induced by the error terms contained in the CERs. This variability
overshadowed the significance of the factors. This finding lead me to remove the error
terms from the CERs. I will address this finding in more detail in the following chapter;
however, the reader should understand that the analysis is now being performed using the
OSD PA&E cost model with the error terms removed from the CERs. When this model
was used in the screening design, several factors were consistently identified as being

significant.

First-Order Model

The results from the screening design phase will be used in developing a first-order

model containing only the significant factors. The form of the first-order model to be

developed in is,

Y=B,+Bx +B,x+.+B.x,.

where k'= the number of significant factors.

Conjecture

The first-order model developed in this phase,

Y =B,+B,x +B,x,+.+B,.x,.
is an appropriate representation of the OSD PA&E cost model over the specified design

region.




Design

This design will not only be used to estimate the model's coefficients, but it must
also provide sufficient data to test if a first-order model is an appropriate representation.
Designs of Resolution III or IV are adequate for estimating the coefficients of the first-
order model; however, the use of a Resolution III requires the assumption that all two-
way interactions are negligible. This assumption poses a problem due to the non-linear
nature of the CERs as in the screening design; therefore, a design of Resolution IV will
be used.

In finalizing the design, the analyst must ensure the data collected in the design
will satisfy the requirements of the analysis. The analysis of this experiment will consist
of an F Test for Lack of Fit, and a Single Degree of Freedom Test for Curvature. The
details of these tests will be provided in the Analysis section; however, the impact on the
design is significant and will be addressed here. The F Test for Lack of Fit requires at
least 2 replicate observations of one or more design points. The Single Degree of
Freedom Test for Curvature requires replicate observations of the center point of the

design region. A summary of the design requirements are,

1) A Resolution IV design for k' factors with
2) at least two replicate observations of one or more design points, and
3) at least two replicate observations of the center point.

From the Screening Design, it was determined that k' = 21 factors were
significant. To minimize the number of runs required, a Plackett-Burman design for
N=24 was selected. Recall that Plackett-Burman designs are Resolution III,V so in order to
meet Requirement (1), the "fold-over" technique was employed. This doubles the
number of runs from 24 to 48. Rather than arbitrarily selecting a single design point to
satisfy Requirement (2), two replicates were obtained for all 48 design points. This again

doubles the number of runs from 48 to 96. Finally, for Requirement (3), I somewhat




arbitrarily added 12 center point replications. The final design consists of 108 runs and

will meet the requirements of the first-order model development and analysis.

Experiment
The experimentation consists of obtaining observations corresponding to the
design described above. An issue in this phase of the experimentation is ensuring that the
insignificant factors are held constant during the experiment. As these variables are not
significant, they will not have a meaningful impact on the analysis; however, to reduce
the variance, they should be held constant. In this experiment, the insignificant factors

were held at their center point level.

Analysis
The first step in the analysis is to estimate the coefficients of the first-order model,
Bj, using regression analysis. An efficient means of carrying out the regression analysis is
with one of the widely used statistical analysis packages; the SAS package was used in
this analysis.
The assumptions of the first-order model are,

1) the residuals are normally distributed
2) the residuals have an expected value of zero, and
3) the residuals have a constant variance, 6°, over the entire design region.

The mode] obtained from the regression analysis must be tested to determine if these
assumptions are met. A normality plot of the residuals, and a goodness-of-fit test will be
employed to determine if the residuals are normally distributed, and a scatter plot will
indicate if the residuals have a constant variance and an expected value of zero. If any
one of the assumptions is not satisfied, the researcher should apply a remedial action as

discussed in Box and Draper (1987:281-283). If the assumptions are satisfied, the next
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step is determining if a first-order model 1s an appropriate model for the OSD PA&E cost
model.

The tests used to determine if a first-order model is appropriate are 1) the F Test
for Lack of Fit, and 2) the Single Degree of Freedom Test for Curvature.

The F Test for Lack of Fit, partitions Sum of Squares Residual (SSE) into the
Sum of Squares Lack of Fit (SSLF) and Sum of Squares Pure Error (SSPE) as follows,

SSE =SSLF + SSPE

where SSPE = ZZ(YV. - 7] )2

b i

is the number of replicated design points,
is the number of replications,
is the mean at the j" replicated design point, and

o bt
Nad|

is the i" observation of the j* replicated design point.

The hypotheses of this analysis are,
Ho: E{Y}=Po+B1Xi+.+ P20X20
H,: E{Y}# Bo + B]X] +...+ Bgono

The test statistic is,

F* = SSLF | SSPE
n-p N-n
_ MSLF
~ MSPE
where n = the number of design points,
N = the total number of observations, and
p = the total number of parameters (including Bo).

The decision rule associated with the F Test for Lack of Fit is,

If F* < F(1 - o; n-p, N-n); fail to reject Ho,

If F* > F(1 - o; n-p, N-n); reject Ho. = This model is not adequate




The result of this analysis will indicate if the variability not accounted for by the first-
order model is significantly greater than the variability of the data -- that is, if the addition
of higher order terms would significantly add to the explanatory power of the model.
This test does not specify which higher order terms should be included.

The Single Degree of Freedom Test for Curvature provides additional insight by
further partitioning the SSLF. The SSLF is partitioned into the lack of fit due to the
absence of quadratic terms (SSPQ) and that due to the absence of other than quadratic

terms.

The hypotheses of this analysis are,

Ho: B11=p22=..=Bii=0
Ha: Atleastone Bjj#0 fori=1,...,20

The test statistic is,

_S55PQ

F' =
MSPE

The decision rule associated with the Single Degree of Freedom Test for Curvature is,

If F* < F(1 - o; 1, N-n); fail to reject Hg,

If F* > F(1 - o; 1, N-n); reject Ho =  Quadratic terms would
significantly add to the
model

The results of the residual analysis in conjunction with the F Test for Lack of Fit and
Single Degree of Freedom Test for Curvature will either lead to the acceptance of the

first-order model, or the formulation of further CONJECTURES.
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Second-Order Model

The analysis of the first-order model indicated that higher order terms would add to the
explanatory power of the model. This phase of the research will attempt to fit a second-

order model to the data.

Conjecture
The second-order model,

. k' k' k' k'
Y=8+ ZBiXi +2Biixi2 +22Bijxixj
i-1 i=1

jis

is an appropriate representation of the OSD PA&E cost model over the specified design

region.

Design

The purpose of this design is very similar to that of the first-order model design;
however, this design must provide estimates for the two-way interactions clear of any
aliases. Explicitly, this design must 1) allow the identification of the significant higher-
order terms, 2) provide estimates of the model's coefficients, and 3) provide sufficient
data to test if the refined second-order model is an appropriate representation of the OSD
PA&E cost model.

Box-Behnken designs are a class of designs that will allow the efficient estimation
of the first- and second-order coefficients. The primary consideration in the selection of a
Box-Behnken design is the absence of "star" points; the integer requirement for several of
the variables precluded the use of "star" points. Construction of the Box-Behnken design
was accomplished by combining an incomplete block design and a factorial arrangement.
The incomplete block design used is for 21 treatments (factors) and contains 70 blocks,

with 3 treatments per block, and replicates each treatment 10 times (Cochran and Cox,
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1957: 479). A block size of 3 requires a 23 factorial arrangement. The design also calls
for the addition of center point replications--12 replicates were added. The final design

consisted of 572 design points.

Experiment
As in the first-order design, the insignificant factors are held constant. In this

experiment, the insignificant variables were assigned to their center point level.

Analysis

This analysis involves several of the techniques already used in previous phases.
Initially, the Partial F Test will be used to identify the significant factors. The focus is on
identifying interaction and quadratic terms that are significant as all the main effects have
already been identified as being significant. This is similar to the procedure used in the
Screening Design Phase. Following the identification of the significant factors,
regression analysis is used to develop a second-order model of these factors. The second-
order model contains the same assumptions as the first-order model:

1) the residuals are normally distributed
2) the residuals have an expected value of zero, and
3) the residuals have a constant variance, 62, over the entire design region.

Residual analysis is used to ensure the model's assumptions are appropriate. A normality
plot will be constructed in the residual analysis which will provide a simple visual
assessment as to if the residual are normally distributed. The goodness-of-fit test will

provide a statistical test of whether the residuals are normally distributed or not.

The hypotheses of the goodness-of-fit test are,

Hp : Residuals are normally distributed

Hj : Residuals are not normally distributed




The test statistic is,

i[ﬂ —E('; )i

i=1

where n. isthe observed number of observations over range i, and

1

E(ni ) is the expected number of observation over range 1, if normally
distributed.

The decision rule associated with the goodness-of-fit test is,

If X2 <x%(o; k-1); fail to reject Ho,

If X® >y2(0; k-1); reject Hg = The distribution is not normally distributed.

If the assumptions appear to hold, the next step is to use the F Test for Lack of Fit to

determine if the second-order model provides an adequate representation of the data.

Estimation of Variance

To this point in the research, a metamodel has been developed using the OSD PA&E cost
model with the error terms removed, and therefore the metamodel can not account for the
variance introduced into the cost estimates by these error terms. In order to approximate
the OSD PA&E cost model, an estimate of the variance induced into the cost estimates by
these error terms is required.

It was shown in Chapter 2 that the estimate from the OSD PA&E cost model is
basically the summation of 29 cost estimates associated with sub-systems that are

obtained from CERs. Since the general form of the CERs with error terms is,

errror

Sub - system Cost = CER*exp




the Production Cost estimate from the OSD PA&E model can therefore be written as,

29

OSD / PAE Cost Estimate = z (CER * exp"’"’)

i=1

By developing a metamodel from the OSD PA&E cost model with the error terms

removed, I have approximated only the sum of the CERs, that is,

29
Metamodel Cost Estimate = (Z CER, ]

i=1
So the metamodel does not approximate the OSD PA&E cost model with error terms at

this point. In order for the metamodel to approximate the OSD PA&E cost model, I need
an estimate of the term, error, such that,

(Metamodel Cost Estimate) * exp”™ = OSD / PAE Cost Estimate

= i (CER*exp™™),
i=1

The reader may question the use of a multiplicative error term in the relationship
shown above rather the move conventional use of an additive error term. The use of an
additive error term model was attempted; however, poor results were obtained.
Specifically, a Box-Behnken design for the 20 significant factors identified in the
screening design was used; also, each design point was replicated 15 times in an attempt
to accommodate the high level of variance introduced into the cost estimates by the error
terms. This design resulted in a total of 8400 cost estimates from the OSD PA&E cost
model. The model developed from this design had an R*=0.19. Following these poor
results, another approach was attempted. The multiplicative error term approach follows

from the form of the OSD PA&E cost model CERs which use a multiplicative error term.




The use of a multiplicative error term provide adequate results as will be shown in

Chapters 4 and 5.

To continue with the approach, from the relationship,

A

(Metamodel Cost Estimate) *exp®”” = OSD/ PAE Cost Estimate

A
the term, error, can be solved as,

OSD / PAE Cost Estimate)
Metamodel Cost Estimate

er;orzln(
Since the numerator is obtained from the OSD PA&E cost model, and the denominator is
obtained by inputting the same parameter values as used in the OSD PA&E model
calculations into the metamodel, it is possible to calculate the errA’or term. As the term,
er;or, is a random variable, it has a distribution of values. This distribution must be
determined, as well as the parameters of the distribution--the mean and standard
deviation. This will be accomplished by calculating “many” values of error. Tt is
suspected that the er;or terms will have a normal distribution, but this must be verified
by creating a normality plot of the terms, and using a goodness-of-fit test. The

parameters of the distribution can be also be estimated.

Conjecture

The error terms are normally distributed with an unknown mean, Y, and

variance, s2.
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Design
In order to estimate the distribution of the error terms, the only design
requirement is that "many" replicate observation be obtained at a single design point. By
the Central Limit Theorem, the sample size should be greater than thirty observations;
however, to improve the estimates, one-thousand replicate observations of the OSD
PA&E cost model will be obtained at each design point as the computational cost is
negligible.
To determine if the mean and variance of each distribution are constant over the
entire design region, several design points will be tested: 1) all inputs at the "low" level,

2) all inputs at the "center" point, and 3) all inputs at the "high" level.

Experiment
The experimentation consists of obtaining one-thousand replicate observations

" on

with all factors determined to be significant at the "low", "center", and "high" levels.

Analysis

The analysis will rely on the calculation,

OSD / PAE Cost Estimate)
Metamodel Cost Estimate

error = ln(
which was previously demonstrated. Using the one-thousand observations from the OSD
PA&E cost model obtained in the experimentation, and the estimate obtained by
inputting the appropriate values into the metamodel, one-thousand independent values of

the error term can be calculated. A normality plot can be prepared for the error values




to determine if they are normally distributed. The expected value and variance for each

design point can also be estimated.

Preparation of Confidence Intervals

Without the capability to prepare confidence intervals, the utility of the metamodel
approach would be reduced as there would be no measure of the uncertainty associated
with the estimated cost. The ability to approximate the distribution of the error terms
contained in the OSD PA&E cost model is the critical component in permitting the
construction of confidence intervals. The method used to calculate confidence intervals
in the metamodel approach follows directly from that presented in the Anderberg paper
(1993:10) and discussed in Chapter 2.

The approach to calculating confidence intervals when using the OSD PA&E cost
model is simply identifying the observation from the model that corresponds to a given
percentile; the equivalent approach when using the metamodel is to approximate the
estimated cost corresponding to a given percentile. This is relatively straightforward
since the distribution of the error terms has been estimated. To estimate the observation

corresponding to a given percentile, the following equation is used,

Estimate at Desired Percentile = (Estimate from Metamodel y«exp®

where z = value of normal distribution with mean, p,
and standard deviation, o, at probability p,

p= desired percentile,

w= mean of errors, and

o= standard deviation of errors.
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A

As an example, suppose that at a given design point, the error terms have been confirmed
to be normally distributed with an estimated mean and variance of 0.1392 and 0.04731,

respectively. To estimate the observation corresponding to the 46.9 percentile, let;

Estimate from Metamodel = 3,047,492
p = 0.469
p = 0.1392
c = 02175

Given this information, z = 0.1223; so the lower bound (46.9 percentile) of a 95%

confidence interval about the 50t percentile is,

(3,047,492)*exp'*” = 3,443,950

This approach will allow the construction of confidence intervals using the
metamode] approach; the only requirement is that the distribution of the error terms be
known. This approach will be applied to the data, and a comparison of metamodel
intervals to those obtained using the OSD PA&E cost model will serve to verify the

approach.
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IV. Summary

This chapter summarizes the results obtained in each phase of the development of a

metamodel for the OSD PA&E cost model. The individual phases were,

Phase 1:  Screening Design,
Phase 2:  First-Order Model,
Phase 3:  Second-Order Model, and

Phase 4;:  Estimation of Variance.

To put this section in perspective, the Methodology section presented the
CONJECTURES and the mechanics (DESIGN, EXPERIMENT, and ANALYSIS)
necessary to test these CONJECTURES for each phase. This section reveals if the
CONJECTURES are founded or if the analysis leads to a refinement of the
CONIJECTURE and further analysis. Chapter 5 will present a comparison of the intervals

obtained from the metamodel to those generated by the OSD PA&E cost model.

Screening Design

The OSD PA&E cost model contains 47 variables that are candidates for inclusion in the
metamodel. In order to reduce the dimensionality of the problem and the number of runs
required in developing the metamodel, each variable is tested for significance. A
Plackett-Burman design providing Resolution IV is used to obtain the data, and the
Partial F Test is used to test for significance.

The OSD PA&E model containing error terms in the CERs was initially used for

the experiment; however, the variability induced by the presence of the error terms
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dominated the effect of many of the variables. To illustrate the level of variability
induced by the error terms, a histogram of 1000 observations with all inputs set at their
center-point is shown in Figure 4-1, and the descriptive statistics of this sample are shown

in Table 4-1.
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Count
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20 1
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1,000,000 2,500,000 4,000,000 5,500,000

Cost Estimate

Figure 4-1. Histogram of Observations with All Variables at Center-Point

Mean 2,028,476
Std. Dev. 371,952
Count 1000
Minimum 1,290,232
Maximum 5,431,550

Table 4-1. Descriptive Statistics of Observations

Clearly, the error terms introduce a significant level of variability into the cost estimates.
This variability made the identification of the significant factors inconsistent. To
illustrate this inconsistent identification, a Resolution IV Plackett-Burman design with

two replicates of each design point was used to obtain two independent sets of cost




illustrate this inconsistent identification, a Resolution IV Plackett-Burman design with
two replicates of each design point was used to obtain two independent sets of cost
estimates from the OSD PA&E cost model with error terms present in the CERs. Using a
Partial F Test with an 0=0.20 produced no agreement in the identification of significant
factors between the two data sets. To overcome this issue, the error terms were removed
from the OSD PA&E cost model. This may concern the reader; however, the variability
imparted by the error terms will be accounted for in the construction of confidence
intervals as demonstrated in Chapter 3. The OSD PA&E model without error terms is
now being used to develop the metamodel.

Using the OSD PA&E cost model without error terms remedied the inconsistent
identification of significant factors. The Partial F Test statistic values and conclusions for
each of the 47 candidate factors are shown in Appendix D. At the 0=0.05 significance
level, 20 variables may be considered significant. It is interesting to observe that even at
0=0.15, no other variables would be considered significant.

To summarize this phase of the research, the CONJECTURE was that although

the OSD PA&E cost model contains k=47 variables, only some k' < 47 are significant.

This CONJECTURE is accepted as k'=20.




First-Order Model

From the screening design, 20 factors are considered significant; Table 4-2 contains

descriptions of the significant factors.

LABEL DESCRIPTION OF VARIABLE
PROPWT Propellant Weight
ISP Propellant Specific Impulse
MIRROR Number Flat Mirrors
ICS Number Of Detector Chips
DETMAT Detector Material
LAMBDA Max Operating Wavelength
AXES Number Of Movable Axes In The Gimbaled Design
DIAM Max Diameter Of Seeker Portion Of Missile
MIPS Millions Of Instructions Per Second
MOPS Millions Of Operations Per Second
MFOPS Millions of Floating Point Operations Per Second
BITS Average Word Length
WTUHF Weight Of UHF Data Link
QRBM Quantity Of RBM
TOT Total Number Of Missiles Procured
QHTP Number Of HTPW Missiles
QIWER Number Of IM/ER Missiles
MAT Slope Of Material For Seeker
TOUCH Slope Of Touch For Seeker
SUPT Slope Of Support For Seeker

Table 4-2. Description of Significant Factors for the Production Cost

A Plackett-Burman design of Resolution IV was again selected for developing the first-

order model with the high- and low-levels of the significant factors corresponding to




those presented in Appendix B. The insignificant factors were held at their center point

values.

The parameters for the first-order model obtained from the regression analysis are

presented in Table 4-3.

Parameter
Factor Estimate
INTERCEPT 1,799,257
PROPWT 8,977
ISP 36,472
MIRROR 14,777
ICS 20,621
DETMAT 22,071
LAMDA 11,241
AXES 43,370
DIAM 44,124
MIPS 39,698
MOPS 45,489
MFOPS 14,742
BITS 136,828
WTUHF 13,653
QRBM 23,876
TOT 218,803
QHTP 22,694
QIWER 64,702
MAT 160,673
TOUCH 71,886
SUPT 50,891

Table 4-3. Parameter Estimate of First-Order Model

This first-order model provides an R2=0.9453. The R2 value is a measure of the
explanatory power of the model. The first-order model's R?=0.9453 indicates that it
accounts for 94.53% of the variability contained in the data; despite the high RZ2, it is
necessary to verify the adequacy of the model. This is accomplished using the F Test for
Lack of Fit and, the Single Degree of Freedom Test for Curvature. In order to use these
tests, it is necessary to partition the Sum of Squares Residual into the Sum of Squares

Lack of Fit (SSLF) and Sum of Squares Pure Error (SSPE) as follows,




SSE =SSLF + SSPE

The SSLF must also be partitioned into the lack of fit due to the absence of quadratic
terms (SSPQ) and that due to the absence of other than quadratic terms. 'The ANOVA

table containing this information for the first-order model is shown in Table 4-4.

Source D.F. Sum of Squares Mean Squares F-value  p-value
Regression 20  11,134,664,000,000 556,733,210,831  75.23 0.0001
Error 87 643,810,396,063 7,400,119,495

+ Lack of Fit 28 643,189,721,760 22,971,061,490 2,184 0.0001
++ Quad Terms 1 30,662,976,579 30,662,976,579 2,914 0.0001
++ Other Terms 27 612,526,745,181 22,686,175,747

+ Pure Error 59 620,674,303 10,519,903

Total 107 11,778,474,396,063

Table 4-4. ANOVA Table for First-Order Production Cost Model

The hypotheses of the F Test for Lack of Fit are,

Ho o E{Y) =B+ BiX; +..4 ByoXyo
Hy: E{Y}#B,+ B X +..4 ByoXoo

The test statistic is,

. MSLF
F =——=2184
MSPE

The decision rule associated with the F Test for Lack of Fit is,

If F* < F(0.975; 28, 59); fail to reject Hy,
If F* > F(0.975; 28, 59); reject Ho = This model is not adequate
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As F* = 2,184 > F(0.975; 28, 59) = 1.82; I reject Hy. In other words, the first-order

model is not an adequate model, and higher-order terms should be included.
The second test, the Single Degree of Freedom Test for Curvature, will provide
further information into the possible significance of quadratic terms in the model. The

hypotheses of this analysis are,

Ho: PB11=Pp22=..=Pii=0

Ha: Atleastone Bjj#0 fori=1,...,20

The test statistic is,

. SSPQ
F=—707=2914
MSPE

The decision rule associated with the Single Degree of Freedom Test for Curvature is,

If F* < F(0.975; 1, 59); fail to reject Ho,

If F* > F(0.975; 1, 59); reject Hy —= Quadratic terms would

significantly add to the
model

As F*= 2,914 > F(0.975; 1, 59) = 5.29; I reject Hp. In other words, not all quadratic
terms are equal to zero, and therefore should be included in the model.

To summarize the results of the First-Order Model phase of the research, the first-
order model provides a good fit of the data--R2=0.9453; however, it is not an adequate
model in as much as a better model is attainable. The F Test of Lack of Fit and the Single
Degree of Freedom Test for Curvature both indicate that higher order terms will
significantly add to the explanatory power of the model. Therefore, the CONJECTURE
that a first-order model is an adequate representation of the OSD PA&E cost model is

rejected.




Second-Order Model

As a first-order model is not an adequate model, the next step is to construct a second-
order model. Using a Box-Behnken design, a second order model was constructed for the
20 significant factors and all two-way interactions and quadratic terms. The form of the

model is initially,

X K k' k' k'
Y = B0+2;1Bixi +2{Buxf +zz i X X
1= 1=

J i<y
where k' = 20.

The complete SAS regression analysis output for this model is presented in
Appendix E. The R? of this model is quite high--0.9996, indicating that only a small
portion of the data's variability is not accounted for in the model. This model contains
231 terms; not all of which are significant. As in the Screening Design phase, the Partial
F Test is employed to identify the significant terms.

The Partial F Test, using an 0=0.01 for parsimony, identified a total of 64 terms--
20 main effects, 32 two-way interactions and 12 quadratic terms as significant; these
factors are listed in Table 4-5. The SAS output for this model is presented in Appendix
F.

This second-order model provides an R?=0.9992 indicating that it accounts for all
but 0.08% of the variability contained in the data. To illustrate the usefulness of the
Partial F Test, the full second-order model with 231 factors provides an R2=0.9996 while
the second-order model with only 64 terms provides an R?=0.9992. Clearly the more

parsimonious model is worth the minimal decrease in explanatory power.
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Significant Main Effects

LABEL DESCRIPTION OF MAIN EFFECTS

Propellant Weight

Propellant Specific Impulse

Number Flat Mirrors

Number Of Detector Chips

Detector Material

Max Operating Wavelength

Number Of Movable Axes In The Gimbaled Design
Max Diameter Of Seeker Portion Of Missile
Millions Of Instructions Per Second

Millions Of Operations Per Second

Millions of Floating Point Operations Per Second
Average Word Length

Weight Of UHF Data Link

Quantity Of RBM

Total Number Of Missiles Procured

Number Of HTPW Missiles

Number Of IM/ER Missiles

Slope Of Material For Seeker

Slope Of Touch For Seeker

Slope Of Support For Seeker

HdOWOoOZEIrRe—=IQoHmomuAw»

Significant Higher Order Terms

Quadratic Terms Two-Way Interactions  Two-Way Interactions

BB DE ER
DD EF FR
HH GH GR
il HI HR

b IL IR

KK L JR
LL KL LR
00 BN OR
QQ EO GS
RR GO HS
SS HO IS
TT IO IS
JO LS

LO GT

BR IT

CR LT

Table 4-5. Table of Significant Factors for the Second-Order Model




To verify the aptness of the model, a normality plot, and standardized residual
plot are constructed. The normality plot is used to verify the residuals are normally

distributed, and is presented in Figure 4-2 for the second-order model.
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Figure 4-2. Normality Plot of Second-Order Model Residuals

In the normality plot, the residuals of the second-order model are plot against their
expected value if they were normally distributed. A plot that is nearly linear suggests
agreement with normality, whereas a plot that departs substantially from linearity
suggests that the errors are not normally distributed. In addition to this simple visual
assessment, a goodness-of-fit test can be accomplished to statistically test if the residuals
are normally distributed.

The normality plot is somewhat concerning as the tails of the plot are slightly
skewed; however, they do not substantially deviate from linearity suggesting that the

residuals are normally distributed. The slight skewness in the tails is also borne out




skewness statistic presented in Table 4-6 and the histogram of the residuals shown in

Figure 4-3.

Mean 0.0013
Std. Dev. 3,4321
Count 572
Minimum -10,124
Maximum 18,727
Skewness 0.6055 /

Table 4-6. Descriptive Statistics of Second-Order Model Residuals
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Figure 4-3. Histogram of Second-Order Model Residuals vs. Normal Distribution

The goodness-of-fit test is used to statistically determine if the residuals are normally
distributed.

The hypotheses of the goodness-of-fit test are,

Ho : Residuals are normally distributed

Hj : Residuals are not normally distributed




The test statistic is,

I [n,. - E(n,. )]2

i=1
= 0.1705

The decision rule associated with the goodness-of-fit Test is,

If X* <%2(0.95; 49)= 67.50; fail to reject Ho,
If X* > %2(0.95; 49)= 67.50; reject Hy = The distribution is not normally
distributed.

Since X = 0.1705 < x2(0.95; 49) = 67.50; I fail to reject Hp, and therefore the
assumption of normally distributed residuals is warranted.

To determine if the residuals have a constant variance over the design region and
if any pattern remains in the residuals, a standardized residual plot is constructed; this is

shown in Figure 4-4. The standardized residuals are calculated as,

Residual

vMSE

Standardized Residual =
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Figure 4-4. Plot of Standardized Residuals vs. Predicted Values

For an apt model, the standardized residuals should typically fall within +3
standard deviations and be randomly distributed in a uniform band centered about zero.
The standardized residual plot shown in Figure 4-4 indicates that several observations are
greater than 3 standard deviations away from the mean; however, for the most part the
standardized residual plot does exhibit the pattern one would expect for an apt model.
The residual analysis indicates that the residuals are normally distributed and that the
model is apt.

As in case of the First-Order model, an F Test for Lack of Fit will be used to

determine if the model is adequate. The ANOVA table for the second-order model is

shown in Table 4-7.

Source D.E. Sum of Squares Mean Squares F-value  p-value
Regression 64  8,727,523,470,464 136,367,554,226 10,286 0.0001
Error 507 6,721,672,171 13,257,736

+ Lack of Fit 496 6,672,538,829 13,452,699 3.01

+ Pure Error 11 49,133,342 4,466,667

Total 571  8,734,245,142,635

Table 4-7. ANOVA Table for Second-Order Model
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The hypotheses of the F Test for Lack of Fit are,
H,:

H .

q *

The second-order model is adequate, and

The second-order model is not adequate

The test statistic is,

£ _ MSLF =301
MSPE

The decision rule associated with the F Test for Lack of Fit is,

If F* < F(0.975; 496, 11); fail to reject Ho,
If F* > F(0.975; 496, 11); reject Hp.

As F*= 3.01 < F(0.975; 496, 11) = 3.06, I fail to reject Ho. In other words, the second-

order model is an adequate model.

To summarize this phase of the research, the CONJECTURE was that a second-
order model is an appropriate representation of the OSD PA&E cost model over the
specified design region. The information gathered from the normality plot, the
standardized residual plot, and the F Test for Lack of Fit lead me to accept the
CONIJECTURE that a second-order model is an adequate representation of the OSD

PA&E cost model.




Estimation of Variance

The CONJECTURE in this phase of the research is that the error terms are normally

distributed with a mean, p, and variance, o2. In order to test this CONJECTURE, the

estimator of the error terms, error , will be used. It has already been shown that

A (Observation from Cost Model)
error =In -
Estimate from Metamodel

As the computational cost is negligible, 1000 observations from the OSD PA&E cost
model will be obtained at each of three input levels 1) all factors at their low-level, 2) all

factors at their center-point, and 3) all factors at their high-level.

Case 1: Low-Level
The error values were calculated using 1000 observations from the OSD PA&E cost
model with all factors set to their low level; the histogram is shown in Figure 4-5, and the

descriptive statistics for the distribution are shown in Table 4-8.
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Figure 4-5. Histogram of error Terms at Low-Level




Mean 0.0771
Std. Dev. 0.1084
Skewness 0.6088

A

Table 4-8. Descriptive Statistics of error Terms at Low-Level

A

The normality plot of the error terms is shown in Figure 4-6.
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Figure 4-6. Normality Plot of error Terms at Low Level
The normality plot appears to warrant the assumption of the error terms being
normally distributed due to the linearity of the plot between the observed values and the
expected value if the terms were normally distributed. This assumption is verified
statistically by the goodness-of-fit test.
The hypotheses of the goodness-of-fit test are,
Ho : The error terms are normally distributed

A

Hja : The error terms are not normally distributed




The test statistic is,

O [n,. —E(n,. )]2

i=1
= 12.14

The decision rule associated with the goodness-of-fit Test is,

If X* <%2(0.95; 49)=67.50 ; fail to reject Ho,
If X* > %2(0.95; 49)=67.50; reject Hy = The distribution is not normally
distributed.

Since X° = 12.14 < X2(0.95; 49)= 67.50; I fail to reject Hp, and therefore the assumption

A

of normally distributed error terms is warranted.
Table 4-8 provides the estimates of the mean and standard deviation for the

AN

error terms at the design point with all factors set to their low level.

Case 2: Center-Point
When one thousand observations were obtained with all significant factors set

equal to their center points, and the error values calculated for each observation. The

histogram is shown in Figure 4-7, and descriptive statistics are presented in Table 4-9.
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Figure 4-7. Histogram of error Terms at Center Point

Mean 0.0767
Std. Dev. 0.1491
Skewness 0.7587

A

Table 4-9. Descriptive Statistics of error Terms at Center Point

A

The normality plot of error terms at center point is shown in Figure 4-8.
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Figure 4-8. Normality Plot of error Terms at Center Point
The normality plot appears to warrant the assumption of the errl'\or terms being normally
distributed due to the linearity of the plot between the observed values and the expected
value if the terms were normally distributed. This assumption is verified statistically by
the goodness-of-fit test.
The hypotheses of the goodness-of-fit test are,

A

Ho : The error terms are normally distributed

N

Hja : The error terms are not normally distributed

The test statistic is,




The decision rule associated with the goodness-of-fit Test is,

If X* > 2(0.95; 49)=67.50; reject Ho = The distribution is not normally
distributed.

Since X° = 15.98 < x2(0.95 ; 49)= 67.50; I fail to reject Hop, and therefore the assumption

A

of normally distributed error terms is warranted.

Case 3: High-Level

A

The histogram obtained for the 1000 error terms calculated when all factors were set to

their high level is shown in Figure 4-9, and the descriptive statistics are shown in Table 4-

10.

If X* < ¥2(0.95; 49)=67.50 ; fail to reject Ho,
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Figure 4-9. Histogram of error Terms at High Level

Mean 0.1498
Std. Dev. 0.2175
Skewness 1.0235




A

The normality plot of error terms at high level is shown is Figure 4-10.
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Figure 4-10. Normality Plot of error Terms at High Level

The normality plot appears somewhat suspect due to the slight lack of linearity. The
goodness-of-fit test will be used to determine if the distribution is normally distributed.
The hypotheses of the goodness-of-fit test are,

Hg : The error terms are normally distributed

A

Ha : The error terms are not normally distributed

The test statistic is,

e =i[ni —E(ni)]z

= E(m)

= 62.44




The decision rule associated with the goodness-of-fit Test is,

If X* < %2(0.95; 49)=67.50 ; fail to reject Ho,
If X* > 2(0.95; 49)=67.50; reject Ho = The distribution is not normally
distributed.

Since X° = 62.44 < x2(0.95 ; 49)= 67.50; I fail to reject Hg, and therefore the assumption
Y

A

of normally distributed error terms is warranted.

To summarize this phase of the research, the CONJECTURE was that the error
terms are normally distributed with a mean, 1_7, and variance, s2. The analysis indicate

that the assumption of normality is warranted; however, the error terms have different

mean and standard deviation at each of the three levels observed. This is summarized in

Table 4-11.
Low Level Center Point High Level
Mean 0.0771 0.0767 0.1498
Standard Deviation 0.1084 0.1491 0.2175

A

Table 4-11. Comparison of error Term Distributions




V. Results

Calculation of Confidence Intervals
In Chapter 4, it was shown that confidence intervals could be calculated from the

metamode] using the equation,

Estimate at Desired Percentile = (Estimate from Metamodel )*exp®

where z=  value of normal distribution with mean, |,
and standard deviation, G, at probability p,

p= desired percentile,
u=  mean of errors, and
o= standard deviation of errors.

A

Table 4-13 presented the mean and standard deviation of the e€rror terms associated
with three design points. This will allow the comparison of confidence intervals using
the metamodel and those generated using the OSD PA&E cost model. The results of this
comparison at the three design points, 1) all factors at their low-level, 2) all factors at

their center-point, and 3) all factors at their high-level are shown in the following pages.
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Case 1: Low-Level

Metamodel Approach OSD PA&E Approach Relative Error

Percentile Lower Upper Lower Upper Lower Upper
50th 1,081,798 1,100,192 1,069,324 1,086,717 1.17% 1.24%

60th 1,111,704 1,131,232 1,101,699 1,120,470 0.91% 0.96%
70th 1,144,572 1,165,491 1,132,624 1,155,319 1.05% 0.88%
80th 1,184,031 1,207,248 1,180,315 1,204,584 0.31% 0.22%

90th 1,239,788 1,269,480 1,234,459 1,267,667 0.43% 0.14%

Table 5-1. Comparison of Metamodel & OSD PA&E Model Intervals with all Factors at

Low-Level
| | I 1
[ ]
oQoth |-
[
80th|-
2
I=
g 7oth [
) —
o
hl_ ]
60' — mmm = OSD/PAE
Interval
(-] = Metamodel
thi—
50 — Interval
I | | |
1.05 1.10 1.15 1.20 1.25 1.30

Cost Estimate in Millions

Figure 5-1. Comparison of Metamodel & OSD PA&E Model Intervals with all Factors at
Low-Level




Case 2: Center-Point

Metamodel Approach OSD PA&E Approach Relative Error

Percentile Lower Upper Lower Upper Lower Upper
50th 1,883,431 1,927,632 1,853,054 1,891,972 1.64% 1.88%

60th 1,955,438 2,002,853 1,914,329 1,956,059 2.15% 2.39%
70t 2,035,421 2,086,780 1,991,890 2,045,591 2.19% 2.01%
80th 2,132,589 2,190,334 2,097,364 2,162,021 1.68% 1.31%

9Qth 2,271,972 2,347,171 2,269,210 2,365,742 0.12% -0.78%

Table 5-2. Comparison of Metamodel & OSD PA&E Model Intervals with all Factors at
Center-Point
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Figure 5-2. Comparison of Metamodel & OSD PA&E Model Intervals with all Factors at
Center-Point




Case 3: High-Level

Metamodel Approach OSD PA&E Approach Relative Error

Percentile Lower Upper Lower Upper Lower Upper
50th 3,443,814 3,562,336 3,354,032 3,454,910 2.68% 3.11%

60th 3,637,539 3,766,910 3,514,791 3,639,757 3.49% 3.49%
70th 3,856,591 3,999,352 3,716,004 3,837,934 3.78% 4.21%
80th 4,128,057 4,292,111 3,960,850 4,152,136 4.22% 3.37%

90th 4,527,445 4,747,679 4,505,317 4,850,057 0.49% -2.11%

Table 5-3. Comparison of Metamodel & OSD PA&E Model Intervals with all Factors at

High Level
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Figure 5-3. Comparison of Metamodel & OSD PA&E Model Intervals with all Factors at
High Level




To summarize this phase of the research, confidence intervals were calculated and
compared using both the OSD PA&E cost model and the metamodel. Several insights

may be gained from these comparisons.

e The intervals prepared using the metamodel are consistently higher than
the intervals generated using the OSD PA&E cost model. This may be
explained by the skewness of the error term distribution. The skewness of
the error terms has inflated the mean, U, which is used to calculate the z

value for the equation,

Estimate at Desired Percentile = (Estimate from Metamodel)*exp®

where z=  value of normal distribution with mean, |,
and standard deviation, o, at probability p,

p= desired percentile,
L= mean of errors, and
o = standard deviation of errors.

e The relative error between the metamodel intervals and the OSD PA&E
intervals increases as the cost estimates increase, in other words the relative
error is lowest when all inputs are at the low value and highest when all inputs
are at their high value. This observation may also be accounted for by the
skewness of the distributions. Table 5-4 summarizes the descriptive statistics
of the distributions, and illustrates that the higher estimates posses a higher
level of skewness which will again inflate the z value used in calculating the

estimate at a desired percentile resulting in a greater estimate value.




Low-Level Center-Point High-Level

Mean 0.0771 0.0767 0.1498
Standard Deviation 0.1084 0.1491 0.2175
Skewness 0.6088 0.7587 1.0235

Table 5-4. Comparison of error Term Distributions; Production

EMD Cost

The focus of this thesis up to this point has been on developing a metamodel for the
Production cost of the TBIP; however, the OSD PA&E model also provides an estimate
of the Engineering, Manufacturing, and Development (EMD) Cost of the TBIP. The
EMD cost is primarily a function of the production cost, but also includes several new
CERs. A metamodel for the EMD Cost has been developed following the same
sequential experimentation framework as described for the Production Cost. As the
methodology used is identical to that described for the Production Cost, the inclusion of a
detailed discussion of its development would be of limited value, so it is presented as an
appendix. The details of the development of a metamodel and results for the EMD Cost
are presented in Appendix A. A comparison of confidence intervals constructed using the
metamodel to intervals generated by the OSD PA&E cost model for the EMD cost are
also presented in Appendix A. Several insights may also be gained from the EMD

comparisons.

e The relative error between the confidence interval prepared using the

metamodel and those generated by the OSD PA&E cost model are negligible--

all are under 1%.




e The distribution of the error terms for the EMD cost is much less skewed
than for the Production cost. This goodness of fit for the EMD error terms
accounts for the close approximation of the metamodel intervals to the OSD

PA&E intervals. Table 5-5 summarizes the er;or term distributions for the

EMD cost.
Low-Level Center-Point High-Level
Mean -0.0842 0.0245 0.1543
Standard Deviation 0.0634 0.078 0.0859
Skewness 0.2538 0.3650 0.3671

Table 5-5. Comparison of er;or Term Distributions; EMD
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VI. Conclusions and Recommendations

The purpose of this thesis was to demonstrate that design of experiment and regression
analysis techniques may be employed to 1) identify the critical cost drivers of the TBIP
cost model, 2) estimate the effects of the cost drivers, and 3) approximate the variance of
the TBIP cost model. If these objectives are achieved, the result is a metamodel which
can be used to construct confidence intervals that estimate those generated by the
OSD/PA&E cost model. The metamodel also holds the potential of providing additional
insight in terms of rectifying discrepancies among cost estimates and facilitating "what-
if" analysis.

This thesis employed a series of designed experiments in conjunction with
regression analysis to develop the metamodels. A total of five separate, but dependent

phases were required,

Phase 1: Screening Design,

Phase 2: First-Order Model,

Phase 3: Second-Order Model,
Phase 4: Estimation of Variance, and

Phase 5: Calculation of Confidence Intervals.

Within each phase, the CONJECTURE, DESIGN, EXPERIMENT, and ANALYSIS
sequential experimentation framework was used. This framework proved useful in
ensuring the experiments yielded the data required to answer the CONJECTURE during

the ANALYSIS.




Conclusions

The ability to identify the critical cost drivers of a model, and quantify their effects was
soundly demonstrated in this thesis. This was demonstrated by the two metamodels that
provided an excellent representation of the cost model's production and EMD costs. This
ability to quantify the critical effects holds significant potential in allowing the analysts to
assign a cost to a proposed change in the program. For instance, the analyst will be able
to inform the decision maker that extending the program an additional X months will
increase the cost of the program by Y dollars. This ability to quantify the critical effects
will also help in rectifying discrepancies between the independent cost estimates and
component cost estimates. For instance if the analysts responsible for the independent
cost estimate feel that 72 months are required for the completion of a program, and the
program offices feels that only 66 months are required, the 6 month difference can be
quantified, and its significance determined.

The ability to calculate confidence intervals using the metamodels was also
demonstrated in this thesis, and it provided acceptable results when compared to the
confidence intervals generated from the OSD/PA&E cost model. Despite the promising
results, the calculation of confidence intervals using the metamodel was not as robust as
originally hoped due to the non-constant distribution of the cost model's variance
resulting from the multiplicative nature of the CER’s error terms. The result of the non-
constant distribution is that the distribution of the model's variance must be estimated at
each design point of interest which clearly limits the usefulness of this approach to create
confidence intervals. Although not investigated in this thesis, it is very likely that a cost
model employing CER’s with additive error terms would have a constant variance over
the entire design space thereby achieving the robustness originally envisioned for this

methodology.
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Recommendations

The following recommendations are made for further investigation into the development

of metamodels for major weapon system cost models.

e To provide further verification of the methodology presented in this thesis,

a metamodel should be developed for a second, dissimilar weapon system.

e The multiplicative nature of the error terms in the CERs complicated the
analysis somewhat, and I suspect is the reason the distribution of the cost
model's variance is non-constant. The development of a metamodel for a

cost model with additive error terms would be of interest.

e Investigation into the reason for the non-constant distribution of the cost
model's variance is needed. Although I suspect the multiplicative nature

of the CER’s error terms is responsible, analysis verifying this suspicion

is required.




Appendix A: EMD Metamodel Development

This appendix provides the details of the development of a metamodel for the EMD Cost
of the TBIP using the OSD PA&E cost model. The sequential experimentation

framework is identical to that detailed in the body of the thesis.

Screening Design

The same 47 factors considered for inclusion in the production cost screening design are
also considered in the EMD screening design. The screening design selected was a
Plackett-Burman design for k=47 factors, and N=48 runs; however the "fold-over"
technique doubled the number of runs required to 96. This design is Resolution IV and
will allow the estimation of all main effects clear of any two-way interactions. The

Partial F Test will also be used to identify the significant factors.

Results
The Partial F Test identified a total of 17 factors as being significant. It is evident that the
EMD Cost is primarily a function of the production cost by the fact that there is only a
one factor identified as significant in the EMD Cost and not consider significant in the
production cost--Number of Prototype Missiles. The significant factors are presented in

Table A-1.




LABEL DESCRIPTION OF VARIABLE
PROPWT Propellant Weight
ISP Propellant Specific Impulse
MIRROR Number Flat Mirrors
ICS Number Of Detector Chips
DETMAT Detector Material
AXES Number Of Movable Axes In The Gimbaled Design
DIAM Max Diameter Of Seeker Portion Of Missile
MIPS Millions Of Instructions Per Second
MOPS Millions Of Operations Per Second
MEFOPS Millions of Floating Point Operations Per Second
BITS Average Word Length
QHTP Number Of HTPW Missiles
QIWER Number Of IM/ER Missiles
MAT Slope Of Material For Seeker
TOUCH Slope Of Touch For Seeker
SUPT Slope Of Support For Seeker
PROTOS Number of Prototype Missiles

Table A-1. Significant Factors for the EMD Cost

First-Order Model

The first-order model containing the 17 significant factors was developed using a
Plackett-Burman design for k=19 factors, and N=20 runs; however the "fold-over"
technique doubled the number of runs to 40. Each design point was also replicate twice
and a total of 12 center-point replications were added to allow the performance of the F
Test for Lack of Fit, and the Single Degree of Freedom Test for Curvature--a total of 92
runs. This design is Resolution IV and will allow the estimation of all main effects clear

of any two-way interactions.

Results
The resultant first-order model provides an R2=0.9267. The ANOVA Table for this

model is shown is Table A-2.




Source D.F. Sum of Squares Mean Squares F-value  p-value

Regression 17 107,478 6,322.0 55.1 0.0001
Error 74 8,498 114.8

+ Lack of Fit 21 7,398 352.3 16.3 0.0001
++ Quad Terms | 5,806 5,806.0 269.2 0.0001
++ Other Terms 20 1,592 79.6

+ Pure Error 51 1,100 21.6

Total 91 115,977

Table A-2. ANOVA Table for First-Order EMD Cost Model

The F Test for Lack of Fit, and the Single Degree of Freedom Test for Curvature both
indicate that higher order terms would significantly add to the explanatory power of the

mode].

Second-Order Model

A Box-Behnken design for 21 factors was employed. This was the same design used in
developing the production cost second-order model. The use of this design over a Box-
Behnken design for 19 factors requires an additional 104 runs; however, the
computational cost is negligible versus the time required to input a Box-Behnken design.
The full second-order model contains 170 factors; not all of which are significant. A
Partial F Test will be used to identify the significant factors. A second-order model will
be developed using only the significant factors, and the F Test for Lack of Fit will

determine if the model is adequate.

Results
The full second-order model contains a total of 170 factors and provides an
R2=0.9172. The SAS output for this model is presented in Appendix F.
The Partial F Test was employed to identify the significant factors. Using an
a=0.10, 35 factors were identified as significant--17 main effects, 13 two-way

interactions, and 5 quadratic terms. This reduced second-order model provides an




R2=0.8999. The SAS output for this model is presented in Appendix G. A listing of the

significant factors is given in Table A-3.

LABLEL Variable Description

Propellant Weight

Propellant Specific Impulse

Number Of Flat Mirrors

Number Of Detector Chips

Detector Material

Number Of Movable Axes In The Gimbaled Design
Max Diameter Of Seeker Portion Of Missile
Millions of Instructions Per Second

Millions of Operations Per Second

Millions of Floating Point Operations Per Second
Average word length

Number of HTPW missiles

Number of IM/ER missiles

Slope of Material for Seeker

Slope of Touch for Seeker

Slope of Support for Seeker

Number of Prototype Missiles

OTOZEZErR—=~TITQONmOmUAOw»

Significant Higher Order Terms
Quadratic Terms Two-Way Interactions

FF AD
I CD
1 CG
KK DG
LL GK
HK
HM
KN
DP
HP
KP
AQ
DQ

Significant Main Effects
Table A-3. Table of Significant Factors for the Second-Order Model




The normality plot of the residuals is presented in Figure A-1 and due to the linearity of

the plot indicates that the residuals are normally distributed.
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Figure A-1. Normality Plot of Residuals for EMD Second-Order Model

The goodness-of-fit test is used to statistically determine if the residuals are normally

distributed.

The hypotheses of the goodness-of-fit test are,

Ho : Residuals are normally distributed

Hj : Residuals are not normally distributed

The test statistic is,




The decision rule associated with the goodness-of-fit Test is,

If X* <42(0.95; 49)= 67.50; fail to reject Ho,
If X* > 2(0.95; 49)= 67.50; reject Hy = The distribution is not normally
distributed.

Since X° = 0.1705 < x2(0.95; 49) = 67.50; I fail to reject Hp, and therefore the

assumption of normally distributed residuals is warranted.

A standardized residual plot has also been constructed to verify the residuals have
a constant variance and that no further pattern remains in the data. The standardized
residual plot is shown in Figure A-2, and appears to be randomly distributed, and

uniformly distributed about zero. The residual analysis indicates that the model is apt.
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Figure A-2. Standardized Residual Plot for Second-Order EMD model

To verify that the model is adequate the F Test for Lack of Fit is used. The ANOVA

table for this model is shown in Table A-4.
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Source D.F. Sum of Squares Mean Squares F-value  p-value

Regression 35 108,609 3103.00 137.60  0.0001
Error 536 12,085 22.55

+ Lack of Fit 525 11,804 22.48 0.88

+ Pure Error 11 281 25.54

Total 571 120,694

Table A-4. ANOVA Table for Second-Order Model

The hypotheses of the F Test for Lack of Fit are,

H,: The second-order model is adequate, and

H,: The second-order model is not adequate
The test statistic is,

. MSLF
pr= 2L

= =088
MSPE

The decision rule associated with the F Test for Lack of Fit is,

If F* 2F(0.975; 525, 11); fail to reject Ho,
If F* > F(0.975; 525, 11); reject Ho.

As F*= 0.88 < F(0.975; 520, 11) = 2.88, I fail to reject Hp. In other words, the second-

order model provides an adequate fit to the data.




Estimation of Variance

As for the production cost, the variance is estimated by the following equation,

[

error =In

Results

A
The distribution of the error terms is calculated at three design points, 1) all factors at
their low-level, 2) all factors at their center-point, and 3) all factors at their high-level.
The histograms, descriptive statistics and normality plots are presented below. As for the

production cost distributions, 1000 observations are used in the estimating the

distributions.

Case 1: Low-Level

For the case with all factors at their low-level, the following distribution was obtained.

A
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Figure A-3. Histogram of error Terms at Low-Level
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Mean -0.0842
Std Dev 0.0634
Skewness 0.2538

A
Table A-5. Descriptive Statistic of error Terms at Low-Level
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Figure A-4. Normality Plot of er?or Terms at Low-Level
The normality plot appears to warrant the assumption of the erl,'\or terms being
normally distributed due to the linearity of the plot between the observed values and the
expected value if the terms were normally distributed. This assumption is verified
statistically by the goodness-of-fit test.
The hypotheses of the goodness-of-fit test are,

A

Ho : The error terms are normally distributed

A

Ha : The error terms are not normally distributed




The test statistic is,

The decision rule associated with the goodness-of-fit Test is,

If X <42(0.95; 49)=67.50 ; fail to reject Ho,
If X* >%2(0.95; 49)=67.50; reject Ho = The distribution is not normally
distributed.

Since X* = 8.444 < x2(0.95; 49)= 67.50; I fail to reject Hp, and therefore the assumption

n

of normally distributed error terms is warranted.

Case 2: Center-Point

For the case with all factors at their center-point, the following distribution was obtained.

Mean 0.0245
Std Dev 0.0780
Skewness 0.3650

A
Table A-6. Descriptive Statistic of error Terms at Center-Point
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Figure A-5. Histogram of error Terms at Center-Point
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The normality plot presented in Figure A-6 appears to warrant the assumption of the
error terms being normally distributed due to the linearity of the plot between the
observed values and the expected value if the terms were normally distributed. This

assumption is verified statistically by the goodness-of-fit test.

The hypotheses of the goodness-of-fit test are,

Ho : The error terms are normally distributed

A

Hj : The error terms are not normally distributed

The test statistic is,

s [n‘. —F (n,. )]2

X*=
i=1 E("i)

= 9.036

The decision rule associated with the goodness-of-fit Test is,

If X° < X2(0.95; 49)=67.50 ; fail to reject Ho,
If X* >%2(0.95; 49)=67.50; reject Ho => The distribution is not normally
distributed.

Since X* =9.036 < x2(0.95 ; 49)= 67.50; I fail to reject Ho, and therefore the assumption

A

of normally distributed error terms is warranted.

Case 3: High-Level

For the case with all factors at their center-point, the following distribution was obtained.

Mean 0.1543
Std Dev 0.0859
Skewness 0.3671

A
Table A-7. Descriptive Statistic of error Terms at High-Level
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Figure A-8. Normality Plot of error Terms at High-Level




The normality plot presented in Figure A-8 appears to warrant the assumption of the

error terms being normally distributed due to the linearity of the plot between the
observed values and the expected value if the terms were normally distributed. This
assumption is verified statistically by the goodness-of-fit test.

The hypotheses of the goodness-of-fit test are,

Hop : The error terms are normally distributed

A

Hj : The error terms are not normally distributed

The test statistic is,

= 6.890

The decision rule associated with the goodness-of-fit Test is,

If X? <%2(0.95; 49)=67.50 ; fail to reject Ho,
i X* > %2(0.95; 49)=67.50; reject Ho = The distribution is not normally
distributed.

Since X* = 6.890 < X2(O.95 ; 49)= 67.50; I fail to reject Hg, and therefore the assumption

A

of normally distributed error terms is warranted.

A
A summary of the EMD error term distribution parameters are presented in

Table A-8.
Low Level Center Point High Level
Mean -0.0842 0.0245 0.1543
Standard Deviation 0.0634 0.078 0.0859

A
Table A-8. Comparison of error Term Distributions




Calculation of Confidence Intervals

As demonstrated for the production cost, the confidence intervals can be calculated from

the metamodel using the equation,

Estimate at Desired Percentile = (Estimate from Metamodel }+exp*

where 7= value of normal distribution with mean, p,
and standard deviation, o, at probability p,

p=  desired percentile,
u=  mean of errors, and
o= standard deviation of errors.

A
Table A-9 presented the mean and standard deviation of the error terms associated with
three design points. This will allow the comparison of confidence intervals using the

OSD PA&E approach and the metamodel approach.

Results
The results of this comparison at the three design points, 1) all factors at their low-level,
2) all factors at their center-point, and 3) all factors at their high-level are shown in the

following pages.

Case 1: Low-Level

A comparison of the confidence intervals generated from the OSD PA&E cost model and
those calculated using the metamodel are presented for in Table A-9 for the case in which
all factors are set to their low-level. A graphical representation is presented in Figure A-

9.




Metamodel Approach OSD PA&E Approach Relative Error
Percentile Lower Upper Lower Upper Lower Upper
50th 751.94 759.39 750.84 758.01 0.15% 0.18%
60th 764.03 771.85 762.45 769.61 0.21% 0.29%
70th 777.16 785.44 775.33 782.60 0.24% 0.36%
g0th 792.73 801.78 790.17 799.99 0.32% 0.22%
9Qth 814.35 825.71 814.01 824.21 0.04% 0.18%

Table A-9. Comparison of Metamodel & OSD PA&E Model Intervals with all Factors at

Low Level
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Figure A-9. Comparison of Metamodel & OSD PA&E Model Intervals with all Factors at

Low Level




Case 2: Center-Point
A comparison of the confidence intervals generated from the OSD PA&E cost model and

those calculated using the metamodel are presented for in Table A-10, and the graphical

presentation is shown in Figure A-10 for the case in which all factors are set to their

center-point.

Metamodel Approach OSD PA&E Approach Relative Error
Percentile Lower Upper Lower Upper Lower Upper
50th 932.94 044.33 928.02 938.99 0.53% 0.57%
60th 951.43 963.42 947.20 959.76 0.45% 0.38%
70th 971.58 084.33 967.51 979.99 0.42% 0.44%
80th 995.57 1,009.58 990.55 1,005.04 0.51% 0.45%
90th 1,029.08 1,046.76 1,028.59 1,053.89 0.05% -0.68%

Table A-10. Comparison of Metamodel & OSD PA&E Model Intervals with all Factors
at Center-Point
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Figure A-10. Comparison of Metamodel & OSD PA&E Model Intervals with all Factors
at Center Point




Case 3: High-Level

A comparison of the confidence intervals generated from the OSD PA&E cost model and

those calculated using the metamodel are presented for in Table A-11, and the graphical

presentation is shown in Figure A-11 for the case in which all factors are set to their high-

level.
Metamodel Approach OSD PA&E Approach Relative Error
Percentile Lower Upper Lower Upper Lower Upper
50th 1,177.03 1,192.86 1,164.58 1,183.47 1.07% 0.79%
60th 1,202.74 1,219.44 1,196.01 1,211.48 0.56% 0.66%
70th 1,230.82 1,248.61 1,227.81 1,247.34 0.25% 0.10%
80th 1,264.32 1,283.92 1,265.32 1,287.92 -0.08% -0.31%
9(th 1,311.26 1,336.07 1,319.45 1,344.91 -0.62% -0.66%

Table A-11. Comparison of Metamodel & OSD PA&E Model Intervals with all Factors
at High-Level
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Figure A-11. Comparison of Metamodel & OSD PA&E Model Intervals with all Factors
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Appendix B: Range of Variables

Variable Label Low-Level Center-Point High-Level
WT 473.6 592 710.4
PROPWT 277.6 347 416.4
ISP 67960 84950 101940
PAYLOAD 640 800 960
WAR 560 700 840
IWERBD 337 365 373
HTPBD 387 415 425
APER 1.6535 2.067 2423
NUMEL 0 0 0
MIRROR 1 2 3
PRISM 0 0 0
LENS 5 7 9
ICS 1 1.5 2
DETIC 48 60 72
TEMP 61.6 77 924
DETMAT 1.832 229 2.748
LAMDA 9.36 11.7 14.04
CAP 78.64 98.3 117.96
CHAN 48 60 72
AXES 2 3 4
DIAM 6.4 8 9.6
MIPS 32 40 48
MOPS 880 1100 1320
MFOPS 0 2.125 425
BITS 16 24 32
POWER 300 375 450
WTUHEF 24 30 36
QRBM 312 390 469
YRRBM 4.8 6 72
VOL 80 100 120
TOT 944 1181 1418
QHTP 236 295 354
QIWER 708 886 1064
PARSEEK 560 700 841
MAT 89.5 92 94.5
TOUCH 80.3 82.8 85.3
SUPT 84.4 86.9 89.4
YRTHTP 32 4 4.8
CONSUMP 240 300 360
PROTOS 22 28 34
FLTTST 21 27 33
DEVTIM 59.2 74 88.8
RBMPROTO 7 9 11
PERCHPTW 0.12 0.15 0.18
AURWT 1200 1225 1250
BIAS 0.008 0.01 0.012
YRIWER 4.8 6 7.2
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Appendix C: Description of Variables

Variable Label Description
WT Rocket Motor Weight
PROPWT Propellant Weight
ISP Propellant Specific Impulse
PAYLOAD Payload Weight-HTPW Configuration
WAR Payload Weight-IW/ER Configuration
IWERBD Mid-Body Airframe Weight-IW/ER Configuration
HTPBD Mid-Body Airframe Weight-HTPW Configuration
APER Aperture Of Optic Assembly
NUMEL Number Of Curved Mirror Elements In Optical Assembly
MIRROR Number Flat Mirror Elements In Optical Assembly
PRISM Number Of Prism Elements In Optical Assembly
LENS Number Of Lens Elements In Optical Assembly
ICS Number Of Detector Chips In Design
DETIC Average Number Of Detectors Per IC
TEMP Operating Temperature Of Focal Plane Array (K)
DETMAT IC Material Factor Of Focal Plane Array
LAMDA Max Operating Wavelength Of Focal Plane Array
CAP Capacity Of Stored Gas
CHAN Number Of Analog Channels In Analog Electronics
AXES Number Of Movable Axes In The Gimbaled Design
DIAM Max Diameter Of Seeker Portion Of Missile
MIPS Millions Of Instructions Per Second In Digital Electronics
MOPS Millions Of Operations Per Second In Digital Electronics
MFOPS Millions Of Floating Point Operations/Sec In Digital Electronics
BITS Average Word Length In Digital Electronics
POWER Maximum Power Output for Power Supply
WTUHF Weight Of UHF Data Link
QRBM Quantity Of RBM
YRRBM Production Years Of RBM
VOL Volume Of Stored Cryogenics
TOT Total Number Of Missiles Procured
QHTP Number Of HTPW Configured Missiles
QIWER Number Of IM/ER Configured Missiles
PARSEEK Number Of Seekers Produced In Parallel Program
MAT Slope Of Material Curve For Seeker Head
TOUCH Slope Of Touch Curve For Seeker Head
SUPT Slope Of Support Curve For Seeker Head
YRTHTP Production Years Of HTPW Configuration
CONSUMP Power Consumption
PROTOS Number Of Prototypes In EMD Phase
FLTTST Number Of Flight Test Performed
DEVTIM Development Time
RBMPROTO Number Of Prototypes Of Rocket Booster Motor
PERCHPTW Percent Of Prototypes In HTPW Configuration
AURWT All-Up Round Weight
BIAS Bias Stability Of The Gyro
YRIWER Production Years Of IW/ER Configuration
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Appendix D: Partial F Test Results for Production Cost First-Order Model

Variable Label F Test Statistic p-Value Conclusion
WT 0.2526 0.6159 Not Significant
PROPWT 3.9889 0.0474 Significant
ISP 52.3704 0.0001 Significant
PAYLOAD 0.7294 0.3943 Not Significant
WAR 1.6325 0.2031 Not Significant
IWERBD 0.7386 0.3913 Not Significant
HTPBD 0.4781 0.4902 Not Significant
APER 1.5259 0.2184 Not Significant
NUMEL 0.1419 0.7069 Not Significant
MIRROR 9.5984 0.0023 Significant
PRISM 0.0003 0.9857 Not Significant
LENS 1.8229 0.1787 Not Significant
ICS 15.1049 0.0001 Significant
DETIC 0.2414 0.6238 Not Significant
TEMP 1.4313 0.2332 Not Significant
DETMAT 16.9469 0.0001 Significant
LAMBDA 3.6008 0.0594 Significant
CAP 0.0077 0.9301 Not Significant
CHAN 0.0694 0.7926 Not Significant
AXES 78.6496 0.0001 Significant
DIAM 74.7689 0.0001 Significant
MIPS 57.9435 0.0001 Significant
MOPS 72.7522 0.0001 Significant
MFOPS 10.0418 0.0018 Significant
BITS 782.6370 0.0001 Significant
POWER 0.0973 0.7554 Not Significant
WTUHF 5.9155 0.0160 Significant
QRBM 18.1737 0.0001 Significant
YRRBM 0.0263 0.8713 Not Significant
VOL 0.3954 0.5303 Not Significant
TOT 825.0709 0.0001 Significant
QHTP 17.8855 0.0001 Significant
QIWER 53.4202 0.0001 Significant
PARSEEK 1.1459 0.2859 Not Significant
MAT 1058.1944 0.0001 Significant
TOUCH 205.0989 0.0001 Significant
SUPT 120.1045 0.0001 Significant
YRTHTP 0.3521 0.5537 Not Significant
CONSUMP 0.0309 0.8608 Not Significant
PROTOS 0.0000 0.9954 Not Significant
FLTTST 0.0069 0.9340 Not Significant
DEVTIM 0.1546 0.6947 Not Significant
RBMPROTO 0.0394 0.8429 Not Significant
PERCHPTW 0.0454 0.8316 Not Significant
AURWT 0.2026 0.6532 Not Significant
BIAS 0.0119 0.9132 Not Significant
YRIWER 0.0271 0.8695 Not Significant




Appendix E: SAS Output for Full Second-Order Model; Production

Analysis of Variance Table:

Sum of Mean

Source DF Squares Square F Value Prob>F
Model 230 8.7311452E12 37961500683 4175.785 0.0001
Error 341 3099985523.6 290590866.6381
C Total 571 8.7342451E12

Root MSE 3015.10641 R-square 0.9996

Dep Mean 1768064.98252 Adj R-sq 0.9994

C.V. 0.17053

Parameter Estimates:

Parameter Standard T for HO:

Variable DF Estimate Error Parameter=0 Prob > ITI
INTERCEP 1 1764908 669.60 2635.78 0.0001
A 1 5934 337.10 17.60 0.0001
B 1 32876 337.10 97.53 0.0001
C 1 14204 337.10 42 .14 0.0001
D 1 17163 337.10 50.91 0.0001
E 1 18917 337.10 56.12 0.0001
F 1 7424 337.10 22.02 0.0001
G 1 40487 337.10 120.10 0.0001
H 1 39277 337.10 116.52 0.0001
I 1 35732 337.10 106.00 0.0001
J 1 40918 337.10 121.38 0.0001
K 1 14011 337.10 41.56 0.0001
L 1 130471 337.10 387.04 0.0001
M 1 10812 337.10 32.08 0.0001
N 1 19068 337.10 56.57 0.0001
e} 1 212340 337.10 629.90 0.0001
P 1 21254 337.10 63.05 0.0001
Q 1 61846 337.10 183.47 0.0001
R 1 160201 337.10 475.23 0.0001
S 1 68144 337.10 202.15 0.0001
T 1 51574 337.10 152.99 0.0001
AR 1 3038 1066.00 2.85 0.0046
AC 1 -738 1066.00 -0.69 0.4895
BC 1 -1062 1066.00 -1.00 0.3198
AD 1 856 1066.00 0.80 0.4227
BD 1 -2077 1066.00 -1.95 0.0522
CD 1 1811 1066.00 1.70 0.0903
AE 1 1633 1066.00 1.53 0.1264
BE 1 -159 1066.00 -0.15 0.8816
CE 1 466 1066.00 0.44 0.6626
DE 1 3898 1066.00 3.66 0.0003
AF 1 1205 1066.00 1.13 0.2591
BF 1 -836 1066.00 -0.78 0.4336
CF 1 1182 1066.00 1.11 0.2683
DF 1 1892 1066.00 1.78 0.0768
EF 1 2929 1066.00 2.75 0.0063
AG 1 -26 1066.00 -0.03 0.9803
BG 1 521 1066.00 0.49 0.6251
CG 1 -691 1066.00 -0.65 0.5175
DG 1 1352 1066.00 1.27 0.2055
EG 1 -238 1066.00 -0.22 0.8235
FG 1 -417 1066.00 -0.39 0.6963
AH 1 579 1066.00 0.54 0.5877
BH 1 -401 1066.00 -0.38 0.7068




Parameter Standard T for HO:

Variable DF Estimate Error Parameter=0 Prob > ITI
CH 1 678 1066.00 0.64 0.5255
DH 1 -1080 1066.00 -1.01 0.3116
EH 1 1382 1066.00 1.30 0.1958
FH 1 224 1066.00 0.21 0.8341
GH 1 13464 1066.00 12.63 0.0001
AT 1 -39 1066.00 -0.04 0.9708
BI 1 -1640 1066.00 -1.54 0.1248
CI 1 -1085 1066.00 -1.02 0.3097
DI 1 683 1066.00 0.64 0.5223
EI 1 1081 1066.00 1.01 0.3113
FI 1 1283 1066.00 1.20 0.2297
GI 1 591 1066.00 0.56 0.5794
HI 1 2789 1066.00 2.62 0.0093
AJ 1 867 1066.00 0.81 0.4166
BJ 1 -1585 1066.00 -1.49 0.1381
CcJ 1 -523 1066.00 -0.49 0.6240
DJ 1 -1797 1066.00 -1.69 0.0927
EJ 1 -991 1066.00 -0.93 0.3530
FJ 1 -48 1066.00 -0.05 0.9640
GJ 1 -889 1066.00 -0.83 0.40590
HJ 1 1083 1066.00 1.02 0.3103
IJ 1 1285 1066.00 1.21 0.2289
AK 1 974 1066.00 0.91 0.3613
BK 1 234 1066.00 0.22 0.8265
CK 1 -514 1066.00 -0.48 0.6302
DK 1 -1106 1066.00 -1.04 0.3004
EK 1 383 1066.00 0.36 0.7197
FK 1 1739 1066.00 1.63 0.1037
GK 1 1327 1066.00 1.25 0.2140
HK 1 -881 1066.00 -0.83 0.4094
IK 1 2351 1066.00 2.21 0.0281
JK 1 1531 1066.00 1.44 0.151¢9
AL 1 460 1066.00 0.43 0.6664
BL 1 570 1066.00 0.54 0.5933
CL 1 -108 1066.00 -0.10 0.9192
DL 1 1710 1066.00 1.60 0.1097
EL 1 1812 1066.00 1.70 0.0901
FL 1 583 1066.00 0.55 0.5848
GL 1 -408 1066.00 -0.38 0.7020
HL 1 2130 1066.00 2.00 0.0465
IL 1 7948 1066.00 7.46 0.0001
JL 1 9760 1066.00 9.16 0.0001
KL 1 3725 1066.00 3.49 0.0005
AM 1 216 1066.00 0.20 0.8397
BM 1 -887 1066.00 -0.83 0.4059
CM 1 1506 1066.00 1.41 0.1588
DM 1 -872 1066.00 -0.82 0.4138
EM 1 -8 1066.00 -0.01 0.9939
FM 1 264 1066.00 0.25 0.8046
GM 1 166 1066.00 0.16 0.8766
HM 1 1424 1066.00 1.34 0.1824
M 1 440 1066.00 0.41 0.6802
JM 1 -258 1066.00 -0.24 0.8088
KM 1 -1557 1066.00 -1.46 0.1450
LM 1 1240 1066.00 1.16 0.2456
AN 1 2366 1066.00 2.22 0.0271
BN 1 3725 1066.00 3.49 0.0005
CN 1 -388 1066.00 -0.36 0.7158
DN 1 244 1066.00 0.23 0.8190
EN 1 470 1066.00 0.44 0.6596
FN 1 ~-1244 1066.00 -1.17 0.2440
GN 1 ~1220 1066.00 -1.15 0.2531
HN 1 -763 1066.00 -0.72 0.4744
IN 1 -493 1066.00 -0.46 0.6442
JN 1 59 1066.00 0.06 0.9557
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Parameter Standard T for HO:

Variable DF Estimate Error Parameter=0 Prob > ITI
KN 1 -1071 1066.00 -1.01 0.3156
LN 1 93 1066.00 0.09 0.9303
MN 1 945 1066.00 0.89 0.3759
AO 1 -2026 1066.00 -1.90 0.0582
BO 1 873 1066.00 0.82 0.4133
CcO 1 240 1066.00 0.23 0.8219
DO 1 2393 1066.00 2.25 0.0254
EO 1 3686 1066.00 3.46 0.0006
FO 1 1372 1066.00 1.29 0.1991
GO 1 5178 1066.00 4.86 0.0001
HO 1 5025 1066.00 4.71 0.0001
I0 1 3952 1066.00 3.71 0.0002
JO 1 7439 1066.00 6.98 0.0001
KO 1 1495 1066.00 1.40 0.1618
LO 1 18798 1066.00 17.63 0.0001
MO 1 2017 1066.00 1.89 0.0594
NO 1 2065 1066.00 1.94 0.0536
AP 1 -253 1066.00 -0.24 0.8128
BP 1 -217 1066.00 ~-0.20 0.8389
CP 1 1364 1066.00 1.28 0.2017
DP 1 -635 1066.00 -0.60 0.5519
EP 1 -192 1066.00 -0.18 0.8575
FP 1 326 1066.00 0.31 0.7603
GP 1 788 1066.00 0.74 0.4604
HP 1 -1113 1066.00 -1.04 0.2972
Ip 1 -980 1066.00 -0.92 0.3586
JP 1 1842 1066.00 1.73 0.0849
KP 1 -1397 1066.00 -1.31 0.1910
LP 1 275 1066.00 0.26 0.7966
MP 1 61 1066.00 0.06 0.9544
NP 1 1598 1066.00 1.50 0.1347
OP 1 1445 1066.00 1.36 0.1763
AQ 1 -3 1066.00 0.00 0.9976
BQ 1 1536 1066.00 1.44 0.1505
CcQ 1 -571 1066.00 -0.54 0.5923
DQ 1 -1967 1066.00 ~1.85 0.0659
EQ 1 996 1066.00 0.93 0.3508
FQ 1 -293 1066.00 -0.27 0.7840
GQ 1 -1751 1066.00 -1.64 0.1015
HQ 1 -1499 1066.00 -1.41 0.1607
IQ 1 -316 1066.00 -0.30 0.7673
JQ 1 -901 1066.00 -0.85 0.3988
KQ 1 -532 1066.00 -0.50 0.6184
LQ 1 988 1066.00 0.93 0.3549
MO 1 52 1066.00 0.05 0.9608
NQ 1 907 1066.00 0.85 0.3955
oQ 1 -686 1066.00 -0.64 0.5201
PQ 1 -708 1066.00 -0.66 0.5070
AR 1 1112 1066.00 1.04 0.2977
BR 1 3497 1066.00 3.28 0.0011
CR 1 2635 1066.00 2.47 0.0139
DR 1 2156 1066.00 2.02 0.0439
ER 1 4474 1066.00 4.20 0.0001
FR 1 2638 1066.00 2.48 0.0138
GR 1 7629 1066.00 7.16 0.0001
HR 1 6075 1066.00 5.70 0.0001
IR 1 6602 1066.00 6.19 0.0001
JR 1 7185 1066.00 6.74 0.0001
KR 1 1592 1066.00 1.49 0.1362
LR 1 24736 1066.00 23.21 0.0001
MR 1 -681 1066.00 -0.64 0.5233
NR 1 873 1066.00 0.82 0.4136
OR 1 26482 1066.00 24 .84 0.0001
PR 1 909 1066.00 0.85 0.3945
OR 1 -598 1066.00 -0.56 0.5753




Parameter Standard T for HO:

Variable DF Estimate Error Parameter=0 Prob > [Tl
AS 1 1588 1066.00 1.49 0.1372
BS 1 323 1066.00 0.30 0.7622
CS 1 1068 1066.00 1.00 0.3173
DS 1 1845 1066.00 1.73 0.0845
ES 1 1144 1066.00 1.07 0.2842
FS 1 738 1066.00 0.69 0.4894
GS 1 4392 1066.00 4.12 0.0001
HS 1 2588 1066.00 2.43 0.0157
IS 1 3396 1066.00 3.19 0.0016
Js 1 4052 1066.00 3.80 0.0002
KS 1 2001 1066.00 1.88 0.0614
LS 1 11254 1066.00 10.56 0.0001
MS 1 246 1066.00 0.23 0.8176
NS 1 -878 1066.00 -0.82 0.4107
0s 1 11878 1066.00 11.14 0.0001
PS 1 -228 1066.00 ~0.21 0.8309
Qs 1 126 1066.00 0.12 0.9057
RS 1 1464 1066.00 1.37 0.1704
AT 1 1333 1066.00 1.25 0.2119
BT 1 -1787 1066.00 -1.68 0.0946
CT 1 1205 1066.00 1.13 0.2590
DT 1 -319 1066.00 -0.30 0.7649
ET 1 507 1066.00 0.48 0.6346
FT 1 -118 1066.00 -0.11 0.9121
GT 1 2998 1066.00 2.81 0.0052
HT 1 2118 1066.00 1.99 0.0477
IT 1 3520 1066.00 3.30 0.0011
JT 1 2484 1066.00 2.33 0.0204
KT 1 555 1066.00 0.52 0.6033
LT 1 8006 1066.00 7.51 0.0001
MT 1 ~-1184 1066.00 -1.11 0.2676
NT 1 117 1066.00 0.11 0.9127
oT 1 9248 1066.00 8.68 0.0001
PT 1 1190 1066.00 1.12 0.2649
QT 1 642 1066.00 0.60 0.5476
RT 1 -33 1066.00 -0.03 0.9750
ST 1 824 1066.00 0.77 0.4402
ARQ 1 456 418.59 1.09 0.2770
BB 1 1209 418.59 2.89 0.0041
cc 1 -60 418.59 -0.14 0.8861
DD 1 -1041 418.59 -2.49 0.0134
EE 1 -516 418.59 -1.23 0.2187
FF 1 209 418.59 0.50 0.6187
GG 1 -438 418.59 -1.05 0.2965
HH 1 1999 418.59 4.78 0.0001
T 1 -1647 418.59 -3.93 0.0001
JJ 1 -2152 418.59 -5.14 0.0001
KK 1 -4371 418.59 -10.44 0.0001
LL 1 -7595 418.59 -18.14 0.0001
MM 1 -103 418.59 -0.25 0.8063
NN 1 ~-734 418.59 -1.75 0.0804
00 1 -3823 418.59 -9.13 0.0001
PP 1 806 418.59 1.93 0.0551
00 1 1729 418.59 4.13 0.0001
RR 1 21721 418.59 51.89 0.0001
SS 1 9650 418.59 23.05 0.0001
TT 1 7276 418.59 17.38 0.0001
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Appendix F: SAS Output for Metamodel; Production

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Prob>F
Model 64 8.7275235E12 136367554226 10285.885 0.0001
Error 507 6721672171.2 13257736.038
C Total 571 8.7342451E12
Root MSE 3641.11742 R-square 0.9992
Dep Mean 1768064.98252 Adj R-sg 0.9991
C.V. 0.20594
Parameter Estimates
Parameter Standard T for HO:
Variable DF Estimate Error Parameter=0 Prob >
INTERCEP 1 1764794 339.75 5194.44 0.0001
A 1 5934 407.09 14.58 0.0001
B 1 32876 407.09 80.76 0.0001
C 1 14204 407.09 34.89 0.0001
D 1 17163 407.09 42 .16 0.0001
E 1 18917 407.09 46.47 0.0001
F 1 7424 407.09 18.24 0.0001
G 1 40487 407.09 99.45 0.0001
H 1 39277 407.09 96.48 0.0001
I 1 35732 407.09 87.78 0.0001
J 1 40918 407.09 100.51 0.0001
K 1 14011 407.09 34.42 0.0001
L 1 130471 407.09 320.50 0.0001
M 1 10812 407.09 26.56 0.0001
N 1 19068 407.09 46 .84 0.0001
0 1 212340 407.09 521.61 0.0001
P 1 21254 407.09 52.21 0.0001
o] 1 61846 407.09 151.92 0.0001
R 1 160201 407.09 393.53 0.0001
S 1 68144 407.09 167.39 0.0001
T 1 51574 407.09 126.69 0.0001
DE 1 3898 1287.33 3.03 0.0026
EF 1 2929 1287.33 2.28 0.0233
GH 1 13464 1287.33 10.46 0.0001
HI 1 2789 1287.33 2.17 0.0307
iL 1 7948 1287.33 6.17 0.0001
JL 1 9760 1287.33 7.58 0.0001
KL 1 3725 1287.33 2.89 0.0040
BN 1 3725 1287.33 2.89 0.0040
EO 1 3686 1287.33 2.86 0.0044
GO 1 5178 1287.33 4.02 0.0001
HO 1 5025 1287.33 3.90 0.0001
I0 1 3952 1287.33 3.07 0.0023
Jo 1 7439 1287.33 5.78 0.0001
LO 1 18798 1287.33 14.60 0.0001
BR 1 3497 1287.33 2.72 0.0068
CR 1 2635 1287.33 2.05 0.0412
ER 1 4474 1287.33 3.48 0.0006
FR 1 2638 1287.33 2.05 0.0409
GR 1 7629 1287.33 5.93 0.0001
HR 1 6075 1287.33 4.72 0.0001
IR 1 6602 1287.33 5.13 0.0001
JR 1 7185 1287.33 5.58 0.0001
LR 1 24736 1287.33 19.22 0.0001
OR 1 26482 1287.33 20.57 0.0001
GS 1 4392 1287.33 3.41 0.0007
HS 1 2588 1287.33 2.01 0.0449




Parameter Standard T for HO:

Variable DF Estimate Error Parameter=0 Prob > |T!
IS 1 3396 1287.33 2.64 0.0086
Js 1 4052 1287.33 3.15 0.0017
LS 1 11254 1287.33 8.74 0.0001
GT 1 2998 1287.33 2.33 0.0203
IT 1 3520 1287.33 2.73 0.0065
LT 1 8006 1287.33 6.22 0.0001
BB 1 1245 448.93 2.77 0.0058
DD 1 -1005 448.93 -2.24 0.0257
HH 1 2035 448.93 4.53 0.0001
II 1 -1611 448.93 -3.59 0.0004
JJ 1 -2116 448.93 -4.71 0.0001
KK 1 -4335 448.93 -9.66 0.0001
LL 1 -7559 448.93 -16.84 0.0001
00 1 -3787 448.93 -8.44 0.0001
Q0 1 1765 448.93 3.93 0.0001
RR 1 21757 448.93 48.46 0.0001
Ss 1 9686 448.93 21.58 0.0001
TT 1 7312 448,93 16.29 0.0001

F-2



Appendix G: SAS Output for Full Second-Order Model; EMD

Analysis of Variance

Sum of Mean

Source DF Squares Square F Value Prob>F
Model 170 110705.77081 651.21042 26.144 0.0001
Error 401 9988.30177 24.90848
C Total 571 120694.07258

Root MSE 4.99084 R-square 0.9172

Dep Mean 915.40513 Adj R-sq 0.8822

C.V. 0.54521

Parameter Estimates

Parameter Standard T for HO:

Variable DF Estimate Error Parameter=0 Prob >|T|
INTERCEP 1 915.15 0.7135 1282.55 0.0001
A 1 0.64 0.5580 1.14 0.2545
B 1 2.07 0.5580 3.71 0.0002
C 1 1.64 0.5580 2.93 0.0036
D 1 1.47 0.5580 2.63 0.0089
E 1 2.60 0.5580 4.65 0.0001
F 1 3.82 0.5580 6.85 0.0001
G 1 4.52 0.5580 8.10 0.0001
H 1 8.74 0.5580 15.67 0.0001
I 1 8.73 0.5580 15.65 0.0001
J 1 3.21 0.5580 5.75 0.0001
K 1 30.32 0.5580 54.34 0.0001
L 1 1.92 0.5580 3.44 0.0006
M 1 3.96 0.5580 7.09 0.0001
N 1 6.66 0.5580 11.93 0.0001
(e} 1 2.76 0.5580 4.94 0.0001
P 1 2.74 0.5580 4.91 0.0001
Q 1 10.95 0.5580 19.63 0.0001
AB 1 -2.93 1.7645 -1.66 0.0981
AC 1 -2.20 1.7645 -1.25 0.2133
BC 1 -0.75 1.7645 -0.43 0.6707
AD 1 -0.76 1.7645 -0.43 0.6652
BD 1 1.52 1.7645 0.86 0.3902
CD 1 2.92 1.7645 1.66 0.0986
AE 1 -2.22 1.7645 -1.26 0.2084
BE 1 -1.64 1.7645 -0.93 0.3530
CE 1 0.35 1.7645 0.20 0.8442
DE 1 0.91 1.7645 0.52 0.6045
AF 1 -0.18 1.7645 -0.10 0.9171
BF 1 -0.45 1.7645 -0.26 0.7981
CF 1 -2.50 1.7645 -1.41 0.1580
DF 1 -0.46 1.7645 -0.26 0.7952
EF 1 0.05 1.7645 0.03 0.9787
AG 1 2.53 1.7645 1.43 0.1527
BG 1 0.32 1.7645 0.18 0.8576
CcG 1 -4.45 1.7645 ~-2.52 0.0121
DG 1 3.50 1.7645 1.99 0.0478
EG 1 0.14 1.7645 0.08 0.9360
FG 1 2.29 1.7645 1.30 0.1955
AH 1 3.01 1.7645 1.70 0.0893
BH 1 0.10 1.7645 0.06 0.9559
CH 1 -0.11 1.7645 -0.07 0.9483
DH 1 0.65 1.7645 0.37 0.7118
EH 1 -1.99 1.7645 -1.13 0.2597
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Parameter Standard T for HO:

Variable DF Estimate Error Parameter=0 Prob >|T]
FH 1 0.82 1.7645 0.47 0.6410
GH 1 -1.70 1.7645 -0.96 0.3357
AT 1 -2.24 1.7645 -1.27 0.2050
BI 1 -1.45 1.7645 -0.82 0.4102
CI 1 0.10 1.7645 0.05 0.9566
DI 1 2.71 1.7645 1.54 0.1257
EI 1 -2.53 1.7645 -1.44 0.1520
FI 1 -0.15 1.7645 -0.09 0.9322
GI 1 -1.44 1.7645 -0.81 0.4165
HI 1 1.56 1.7645 0.89 0.3769
AJ 1 -1.91 1.7645 -1.08 0.2809
BJ 1 -0.10 1.7645 -0.06 0.9539
CJ 1 -1.61 1.7645 -0.91 0.3625
DJ 1 -0.53 1.7645 -0.30 0.7637
EJ 1 2.04 1.7645 1.16 0.2477
FJ 1 2.29 1.7645 1.30 0.1959
GJ 1 -1.37 1.7645 ~-0.78 0.4373
HJ 1 -2.59 1.7645 -1.47 0.1434
IJ 1 0.88 1.7645 0.50 0.6175
AK 1 2.26 1.7645 1.28 0.200°8
BK 1 1.90 1.7645 1.08 0.2810
CK 1 -1.85 1.7645 -1.05 0.2957
DK 1 1.89 1.7645 1.07 0.2845
EK 1 -1.46 1.7645 -0.83 0.4081
FK 1 -0.82 1.7645 -0.47 0.6423
GK 1 -3.00 1.7645 -1.70 0.0899
HK 1 3.42 1.7645 1.94 0.0533
IK 1 0.66 1.7645 0.37 0.7106
JK 1 2.64 1.7645 1.49 0.1361
AL 1 -1.04 1.7645 -0.59 0.5542
BL 1 -0.93 1.7645 -0.53 0.6002
CL 1 2.36 1.7645 1.34 0.1820
DL 1 1.94 1.7645 1.10 0.2722
EL 1 -0.47 1.7645 -0.27 0.7890
FL 1 -0.11 1.7645 -0.07 0.9484
GL 1 -0.02 1.7645 -0.01 0.9887
HL 1 1.41 1.7645 0.80 0.4256
IL 1 -0.53 1.7645 -0.30 0.7637
JL 1 -1.21 1.7645 -0.69 0.4931
KL 1 -1.15 1.7645 -0.65 0.5146
AM 1 -1.51 1.7645 -0.85 0.3935
BM 1 0.52 1.7645 0.30 0.7684
CM 1 0.57 1.7645 0.32 0.7477
DM 1 1.68 1.7645 0.95 0.3427
EM 1 -2.02 1.7645 -1.15 0.2523
FM 1 -1.20 1.7645 -0.68 0.4956
GM 1 -0.11 1.7645 -0.06 0.9506
HM 1 4.11 1.7645 2.33 0.0203
M 1 -0.56 1.7645 -0.32 0.7509
JIM 1 -0.89 1.7645 -0.50 0.6159
KM 1 1.54 1.7645 0.87 0.3831
M 1 0.38 1.7645 0.22 0.8285
AN 1 1.39 1.7645 0.79 0.4321
BN 1 -2.19 1.7645 -1.24 0.2146
CN 1 -0.90 1.7645 -0.51 0.6105
DN 1 -1.02 1.7645 -0.58 0.5642
EN 1 1.01 1.7645 0.57 0.5677
FN 1 0.97 1.7645 0.55 0.5809
GN 1 2.45 1.7645 1.39 0.1665
HN 1 0.71 1.7645 0.40 0.6874
IN 1 0.96 1.7645 0.54 0.5869
JN 1 -0.55 1.7645 -0.31 0.7536
KN 1 4.93 1.7645 2.79 0.0055
LN 1 -0.54 1.7645 -0.31 0.7604
MN 1 0.17 1.7645 0.10 0.9229




Parameter Standard T for HO:

Variable DF Estimate Error Parameter=0 Prob >|T|
a0 1 2.33 1.7645 1.32 0.1869
BO 1 -1.96 1.7645 -1.11 0.2674
co 1 -1.79 1.7645 -1.01 0.3123
DO 1 1.36 1.7645 0.77 0.4406
EO 1 -0.09 1.7645 -0.05 0.9577
FO 1 0.31 1.7645 0.18 0.8610
GO 1 -0.62 1.7645 -0.35 0.7261
HO 1 1.84 1.7645 1.04 0.2974
10 1 -0.83 1.7645 -0.47 0.6392
JO 1 -0.52 1.7645 -0.30 0.7670
KO 1 0.37 1.7645 0.21 0.8338
LO 1 -0.13 1.7645 -0.07 0.9412
MO 1 0.04 1.7645 0.02 0.9824
NO 1 -1.45 1.7645 -0.82 0.4102
AP 1 -0.08 1.7645 -0.05 0.9618
BP 1 1.64 1.7645 0.93 0.3540
CP 1 0.12 1.7645 0.07 0.9438
DP 1 -3.22 1.7645 -1.82 0.0688
EP 1 1.58 1.7645 0.90 0.3706
Fp 1 -1.12 1.7645 -0.64 0.5246
GP 1 -1.77 1.7645 -1.01 0.3152
HP 1 3.64 1.7645 2.06 0.0397
1P 1 0.56 1.7645 0.32 0.7513
JP 1 -2.14 1.7645 -1.21 0.2255
KP 1 -2.99 1.7645 -1.70 0.0908
LP 1 2.25 1.7645 1.28 0.2031
MP 1 -0.42 1.7645 -0.24 0.8115
NP 1 -0.78 1.7645 -0.44 0.6578
oP 1 -0.57 1.7645 -0.32 0.7459
AQ 1 3.29 1.7645 1.87 0.0627
BQ 1 0.00 1.7645 0.00 0.9996
cQ 1 -0.39 1.7645 -0.22 0.8273
DQ 1 -2.90 1.7645 -1.64 0.1015
EQ 1 -0.82 1.7645 -0.47 0.6419
FQ 1 0.29 1.7645 0.17 0.8681
GQ 1 0.71 1.7645 0.41 0.6858
HQ 1 -0.76 1.7645 -0.43 0.6654
Q0 1 2.31 1.7645 1.31 0.1916
JQ 1 0.07 1.7645 0.04 0.9702
KQ 1 -1.46 1.7645 -0.83 0.4096
LQ 1 2.26 1.7645 1.28 0.2016
MQ 1 ~-0.99 1.7645 -0.56 0.5767
NQ 1 0.10 1.7645 0.06 0.9530
0Q 1 1.02 1.7645 0.58 0.5646
PQ 1 0.91 1.7645 0.52 0.6066
AR 1 0.97 0.6387 1.51 0.1308
BB 1 0.02 0.6387 0.03 0.9735
cc 1 0.39 0.6387 0.60 0.5470
DD 1 0.55 0.6387 0.86 0.3912
EE 1 0.50 0.6387 0.78 0.4346
FF 1 1.09 0.6387 1.71 0.0882
GG 1 0.38 0.6387 0.59 0.5568
HH 1 0.94 0.6387 1.48 0.1408
II 1 -1.70 0.6387 -2.66 0.0082
JJ 1 -1.20 0.6387 -1.88 0.0616
KK 1 -1.54 0.6387 ~2.42 0.0160
LL 1 1.05 0.6387 1.65 0.0994
MM 1 -0.15 0.6387 -0.23 0.8202
NN 1 0.86 0.6387 1.35 0.1771
00 1 -0.17 0.6387 -0.27 0.7914
PP 1 0.20 0.6387 0.32 0.7528
Q0 1 -0.34 0.6387 -0.53 0.5988
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Appendix H: SAS Output for Metamodel; EMD

Analysis of Variance

Sum of Mean
Source DF sSquares Square F Value Prob>F
Model 35 108608.95346 3103.11296 137.629 0.0001
Error 536 12085.11912 22.54686
C Total 571 120694.07258
Root MSE 4.74835 R-square 0.8999
Dep Mean 915.40513 Adj R-sq 0.8933
C.V. ©0.51872
Parameter Estimates
Parameter Standard T for HO:
Variable DF Estimate Error Parameter=0 Prob > |T|
INTERCEP 1 915.89 0.2806 3263.63 0.0001
A 1 0.64 0.5309 1.20 0.2309
B 1 2.07 0.5309 3.90 0.0001
C 1 1.64 0.5309 3.08 0.0022
D 1 1.47 0.5309 2.76 0.0059
E 1 2.60 0.5309 4.89 0.0001
F 1 3.82 0.5309 7.20 0.0001
G 1 4.52 0.5309 8.51 0.0001
H 1 8.74 0.5309 16.47 0.0001
I 1 8.73 0.5309 16.45 0.0001
J 1 3.21 0.5309 6.04 0.0001
K 1 30.32 0.5309 57.12 0.0001
L 1 1.92 0.5309 3.62 0.0003
M 1 3.96 0.5309 7.45 0.0001
N 1 6.66 0.5309 12.54 0.0001
0 1 2.76 0.5309 5.20 0.0001
P 1 2.74 0.5309 5.16 0.0001
Q 1 10.95 0.5309 20.63 0.0001
AB 1 -2.93 1.6788 -1.74 0.0820
CD 1 2.92 1.6788 1.74 0.0824
CG i -4.45 1.6788 -2.65 0.0083
DG 1 3.50 1.6788 2.09 0.0374
GK 1 -3.00 1.6788 -1.79 0.0745
HK 1 3.42 1.6788 2.04 0.0421
HM 1 4.11 1.6788 2.45 0.0147
KN 1 4.93 1.6788 2.94 0.0035
DP 1 -3.22 1.6788 -1.92 0.0557
HP 1 3.64 1.6788 2.17 0.0305
KP 1 -2.99 1.6788 -1.78 0.0753
AQ 1 3.29 1.6788 1.96 0.0503
DQ 1 -2.90 1.6788 -1.73 0.0851
FF 1 0.86 0.5753 1.49 0.1376
11 1 -1.93 0.5753 -3.36 0.0008
JJ 1 -1.43 0.5753 -2.49 0.0130
KK 1 -1.78 0.5753 -3.10 0.0021
LL 1 0.82 0.5753 1.42 0.1554
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